Compare commits

...

273 Commits

Author SHA1 Message Date
f1c9ef3afd Merge remote-tracking branch 'nm/lwilkinson/fix-flashmla-full-cudagraph' into wide_ep_working_branch 2025-07-27 21:22:09 +00:00
d80a82f961 fix dp plus full cuda-graph
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-07-27 21:06:56 +00:00
a9b2a1d704 [Misc] Refactor vllm config str (#21666) 2025-07-27 09:51:44 -07:00
57c22e57f9 Fix CUDA permute/unpermute for use with DeepGemm Moe (#17934)
Signed-off-by: Caleb_Du <Caleb_Du@zju.edu.cn>
2025-07-27 07:08:00 -07:00
bda9d0535f [Refactor] Refactor MOE NVFP4 Code Base: ModelOpt + Compressed Tensor (#21631)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-27 05:25:21 -07:00
3d847a3125 [VLM] Add video support for Intern-S1 (#21671)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-07-27 11:49:43 +00:00
5f8c9a425e Migrate Florence2ImagePixelInputs to TensorSchema (#21663)
Signed-off-by: Benji Beck <benjibeck@meta.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-07-27 02:43:02 -07:00
1cbf951ba2 [Misc] add default value for file pattern arg (#21659)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-07-27 05:14:51 +00:00
a8936e5193 Refactor: Remove numpy dependency from LoggingStatLogger (#20529)
Signed-off-by: zitian.zhao <zitian.zhao@tencentmusic.com>
2025-07-27 04:06:21 +00:00
01a395e9e7 [CI/Build][Doc] Clean up more docs that point to old bench scripts (#21667)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-07-27 04:02:12 +00:00
971948b846 Handle non-serializable objects in vllm bench (#21665) 2025-07-27 03:35:22 +00:00
eed2f463b2 [VLM] Support HF format Phi-4-MM model (#17121)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-26 20:07:57 -07:00
20950b29fb Migrate ChameleonImagePixelInputs to TensorSchema (#21657)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-07-26 19:34:25 -07:00
3339cba3ff Migrate FuyuImagePatchInputs to TensorSchema (#21662)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-07-26 19:34:14 -07:00
0b8caf9095 Migrate DeepseekVL2ImageInputs to TensorSchema (#21658)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-07-26 19:34:11 -07:00
ccf27cc4d4 Migrate Blip2ImagePixelInputs and Blip2ImageEmbeddingInputs to TensorSchema (#21656)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-07-27 10:33:52 +08:00
c657369841 support torch.compile for bailing moe (#21664) 2025-07-26 23:54:32 +00:00
6c66f28fa5 Remove xformers requirement for Mistral-format Pixtral and Mistral3 (#21154)
Signed-off-by: Wenchen Lo <charles761013@gmail.com>
2025-07-26 17:20:29 -06:00
de509ae8eb [NVIDIA] Explicitly disable shuffled weights for flashinfer blockscale moe fp8 kernels (#21411)
Signed-off-by: kaixih <kaixih@nvidia.com>
2025-07-26 07:10:36 -07:00
e7c4f9ee86 [CI/Build][Doc] Move existing benchmark scripts in CI/document/example to vllm bench CLI (#21355)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-07-26 07:10:14 -07:00
9094d11c5d [Bugfix][Apple Silicon] fix missing symbols when build from source on Mac with Apple Silicon (#21380)
Signed-off-by: Yeju Zhou <yejuzhou@outlook.com>
2025-07-26 07:09:57 -07:00
56e544f24b [Refactor] Remove moe_align_block_size_triton (#21335)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-26 07:08:29 -07:00
97d6c30cc9 [BugFix] Fix shared storage connector load kv only load attention layer (#21428)
Signed-off-by: David Chen <530634352@qq.com>
2025-07-26 07:07:40 -07:00
a40a8506df [Misc] Improve memory profiling debug message (#21429)
Signed-off-by: Ye (Charlotte) Qi <yeq@meta.com>
2025-07-26 07:07:21 -07:00
c215f5c877 [Bug] Fix has_flashinfer_moe Import Error when it is not installed (#21634)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-26 07:06:14 -07:00
1cd6eaba54 Support encoder-only models without KV-Cache (#21270)
Signed-off-by: Max de Bayser <maxdebayser@gmail.com>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Russell Bryant <rbryant@redhat.com>
2025-07-26 21:09:52 +08:00
f27fdfc3ed [Bugfix] Investigate Qwen2-VL failing test (#21527)
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-07-26 06:09:29 -07:00
de10ff0b7c Migrate AyaVisionImagePixelInputs to TensorSchema for shape validation (#21622)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-07-26 06:08:18 -07:00
9d197280fa Migrate AriaImagePixelInputs to TensorSchema for shape validation (#21620)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-07-26 06:08:15 -07:00
e98def439c [Take 2] Correctly kill vLLM processes after benchmarks (#21646)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-07-26 06:06:05 -07:00
05c1126f29 [Misc] remove unused try-except in pooling config check (#21618)
Signed-off-by: reidliu41 <reid201711@gmail.com>
2025-07-26 12:20:03 +00:00
875af38e01 Support Intern-S1 (#21628)
Signed-off-by: Roger Wang <hey@rogerw.me>
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Roger Wang <hey@rogerw.me>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
2025-07-26 19:14:04 +08:00
7728dd77bb [TPU][Test] Divide TPU v1 Test into 2 parts. (#21431) 2025-07-26 06:20:30 +00:00
2f6e6b33fb [Bugfix] Fix isinstance check for tensor types in _load_prompt_embeds to use dtype comparison (#21612)
Signed-off-by: Alexandre Juan <a.juan@netheos.net>
2025-07-25 20:11:10 -07:00
a55c95096b Correctly kill vLLM processes after finishing serving benchmarks (#21641)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-07-25 19:06:21 -07:00
97349fe2bc [Docs] add offline serving multi-modal video input expamle Qwen2.5-VL (#21530)
Signed-off-by: David Chen <530634352@qq.com>
2025-07-25 18:37:32 -07:00
62965de5fe [Model] Ultravox: Support Llama 4 and Gemma 3 backends (#17818)
Signed-off-by: Farzad Abdolhosseini <farzad@fixie.ai>
Signed-off-by: Patrick Li <patrick8289@gmail.com>
Co-authored-by: Patrick Li <patrick8289@gmail.com>
2025-07-25 18:12:31 -07:00
7ae75fa6d0 [Feature] Add support for MoE models in the calibration-free RTN-based quantization (#20766)
Signed-off-by: Alex Kogan <alex.kogan@oracle.com>
2025-07-25 18:09:34 -07:00
f1b286b2fb [TPU] Update ptxla nightly version to 20250724 (#21555)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-07-25 17:09:00 -07:00
c7742d6113 [Bugfix] Always set RAY_ADDRESS for Ray actor before spawn (#21540)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-07-25 17:08:30 -07:00
cea96a0156 [Bugfix] Fix sync_and_slice_intermediate_tensors (#21537)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-07-25 17:07:58 -07:00
2eddd437ba Add interleaved RoPE test for Llama4 (Maverick) (#21478)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-07-25 17:07:26 -07:00
75d29cf4e1 [Perf] Cuda Kernel for Int8 Per Token Group Quant (#21476)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-25 17:07:07 -07:00
41d3082c41 Add Unsloth to RLHF.md (#21636) 2025-07-25 17:06:48 -07:00
7cfea0df39 [TPU][Test] Rollback PR-21550. (#21619)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-07-25 13:22:01 -07:00
5ac3168ee3 [Docs] add auto-round quantization readme (#21600)
Signed-off-by: Wenhua Cheng <wenhua.cheng@intel.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-25 08:52:42 -07:00
ec1250421a [BugFix] Harden coordinator startup
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-25 15:36:38 +01:00
8177e2f02f [BugFix] Improve internal DP load balancing
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-25 15:34:15 +01:00
396ee94180 [CI] Unifying Dockerfiles for ARM and X86 Builds (#21343)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-07-25 07:33:56 -07:00
e189b50f53 Add support for Prithvi in Online serving mode (#21518)
Signed-off-by: Michele Gazzetti <michele.gazzetti1@ibm.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-07-25 07:01:27 -07:00
136d750f5f [Kernel] Improve machete memory bound perf (#21556)
Signed-off-by: czhu-cohere <conway.zhu@cohere.com>
2025-07-25 06:53:21 -07:00
b3caeb82e7 [ROCm][AITER] Enable fp8 kv cache on rocm aiter backend. (#20295)
Signed-off-by: fsx950223 <fsx950223@outlook.com>
Signed-off-by: amd-ruitang3 <Rui.Tang2@amd.com>
Co-authored-by: amd-ruitang3 <Rui.Tang2@amd.com>
2025-07-25 06:50:21 -07:00
eab2f3980c [Model] Replace Mamba2 RMSNorm Gated with Fused Triton Kernel (#20839)
Signed-off-by: Chih-Chieh-Yang <7364402+cyang49@users.noreply.github.com>
Signed-off-by: Yu Chin Fabian Lim <fabian.lim@gmail.com>
Signed-off-by: Chih-Chieh Yang <7364402+cyang49@users.noreply.github.com>
Co-authored-by: Yu Chin Fabian Lim <fabian.lim@gmail.com>
2025-07-25 06:49:36 -07:00
9fe98d4250 [Frontend] Add request_id to the Request object so they can be controlled better via external load balancers (#21009)
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>
2025-07-25 06:49:11 -07:00
29c6fbe58c [MODEL] New model support for naver-hyperclovax/HyperCLOVAX-SEED-Vision-Instruct-3B (#20931)
Signed-off-by: bigshanedogg <bigshane319@gmail.com>
2025-07-25 06:05:42 -07:00
c72f049cb4 [Model] Fix Ernie4.5MoE e_score_correction_bias parameter (#21586)
Signed-off-by: zhouchong <zhouchong03@baidu.com>
Co-authored-by: zhouchong <zhouchong03@baidu.com>
2025-07-25 06:02:53 -07:00
f3a683b7c9 [Bugfix][Logprobs] Fix logprobs op to support more backend (#21591)
Signed-off-by: MengqingCao <cmq0113@163.com>
2025-07-25 05:53:07 -07:00
46d81d6951 [V1] Get supported tasks from model runner instead of model config (#21585)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-25 05:36:45 -07:00
5c3f2628d5 [Quantization] Enable BNB support for more MoE models (#21370)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-25 03:57:34 -07:00
7311f74468 [Bugfix] GGUF: fix AttributeError: 'PosixPath' object has no attribute 'startswith' (#21579)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-07-25 03:42:23 -07:00
8ed01e32f7 Add H20-3e fused MoE kernel tuning configs for Qwen3-Coder-480B-A35B-Instruct (#21598)
Signed-off-by: 许文卿 <xwq391974@alibaba-inc.com>
2025-07-25 02:36:55 -07:00
e38e96a3c0 [Tests] Harden DP tests (#21508)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-25 02:27:24 -07:00
40d86ee412 [TPU][Bugfix] fix OOM issue in CI test (#21550)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-07-24 23:01:53 -07:00
85d051f026 [Misc] Removed undefined cmake variables MOE_PERMUTE_ARCHS (#21262)
Signed-off-by: Yang Chen <yangche@fb.com>
2025-07-24 22:54:23 -07:00
5140f54b89 [CI/Build] fix cpu_extension for apple silicon (#21195)
Signed-off-by: ignaciosica <mignacio.sica@gmail.com>
2025-07-24 22:53:59 -07:00
947edd099e [Misc][Tools] make max-model-len a parameter in auto_tune script (#21321)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-07-24 22:46:43 -07:00
fde60ee775 [Model] Fix a check for None but the return value was empty list in Gemma3 MM vision_embeddings (#21479)
Signed-off-by: Hongmin Fan <fanhongmin@google.com>
2025-07-25 13:46:06 +08:00
b38bc652ac [Model] Support tensor parallel for timm ViT in Deepseek_vl2 (#21494)
Signed-off-by: wzqd <1057337859@qq.com>
2025-07-24 22:45:16 -07:00
adaf2c6d4f [Bugfix] fix modelscope snapshot_download serialization (#21536)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-07-24 22:44:38 -07:00
42343f1f89 [CI] Update CODEOWNERS for CPU and Intel GPU (#21582)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-07-24 21:58:03 -07:00
965bc71b04 Integrate TensorSchema with shape validation for Phi3VImagePixelInputs (#21232)
Signed-off-by: Benji Beck <benjibeck@meta.com>
2025-07-24 21:43:52 -07:00
807a328bb6 [Docs] Add requirements/common.txt to run unit tests (#21572)
Signed-off-by: Zhou Fang <fang.github@gmail.com>
2025-07-24 20:51:15 -07:00
e0be2c4d09 [TPU][Test] Temporarily suspend this MoE model in test_basic.py. (#21560)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-07-24 20:44:50 -07:00
9c8b2c2a8a [DP] Support api-server-count > 0 in hybrid DP LB mode (#21510)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-24 20:18:16 -07:00
2212cd6cfb [Bugfix] DeepGemm utils : Fix hardcoded type-cast (#21517)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-07-24 20:17:29 -07:00
ce3a9b1378 [Kernel] adding fused_moe configs for upcoming granite4 (#21332)
Signed-off-by: Burkhard Ringlein <ngl@zurich.ibm.com>
Co-authored-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-07-24 20:16:59 -07:00
2ce90e5b01 Fix GLM-4 PP Missing Layer When using with PP. (#21531)
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
2025-07-24 20:07:38 -07:00
633f6e804b [Bug] Fix DeepGemm Init Error (#21554)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-24 20:07:22 -07:00
b57296bb9a [Docs] Fix site_url for RunLLM (#21564)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-24 20:05:58 -07:00
34ddcf9ff4 [Frontend] run-batch supports V1 (#21541)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-24 20:05:55 -07:00
fe56180c7f [MoE] More balanced expert sharding (#21497)
Signed-off-by: Woosuk Kwon <woosuk@thinkingmachines.ai>
2025-07-24 15:56:08 -07:00
07d80d7b0e [TPU][TEST] HF_HUB_DISABLE_XET=1 the test 3. (#21539)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-07-24 15:33:04 -07:00
2dd72d23d9 update flashinfer to v0.2.9rc1 (#21485)
Signed-off-by: Weiliang Liu <weiliangl@nvidia.com>
2025-07-24 14:06:11 -07:00
a6c7fb8cff [Docs] Add Expert Parallelism Initial Documentation (#21373)
Signed-off-by: simon-mo <simon.mo@hey.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-24 12:36:06 -07:00
a7272c23d0 [Docs][minor] Fix broken gh-file link in distributed serving docs (#21543)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
2025-07-24 10:36:56 -07:00
6066284914 [P/D] Support CPU Transfer in NixlConnector (#18293)
Signed-off-by: Juncheng Gu <juncgu@gmail.com>
Signed-off-by: Richard Liu <ricliu@google.com>
Co-authored-by: Richard Liu <39319471+richardsliu@users.noreply.github.com>
Co-authored-by: Richard Liu <ricliu@google.com>
2025-07-24 17:58:42 +01:00
1e9ea8e69d [P/D] Move FakeNixlWrapper to test dir (#21328)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-07-24 08:53:45 -07:00
d9f9a3fd96 [XPU] Conditionally import CUDA-specific passes to avoid import errors on xpu platform (#21036)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-07-24 23:23:36 +08:00
1b25f1fe75 Update flashinfer CUTLASS MoE Kernel (#21408)
Signed-off-by: Shu Wang. <shuw@nvidia.com>
2025-07-24 08:13:31 -07:00
e8cb0d0495 [Bug] Fix Compressed Tensor NVFP4 cutlass_fp4_group_mm illegal memory access (#21465)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-24 08:13:24 -07:00
684174115d [Docs] Rewrite Distributed Inference and Serving guide (#20593)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-24 08:13:05 -07:00
cdb79ee63d [Docs] Update Tensorizer usage documentation (#21190)
Signed-off-by: Sanger Steel <sangersteel@gmail.com>
Signed-off-by: William Goldby <willgoldby@gmail.com>
Co-authored-by: William Goldby <willgoldby@gmail.com>
2025-07-24 06:56:18 -07:00
5a19a6c670 [Fix] Update mamba_ssm to 2.2.5 (#21421)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-07-24 03:25:41 -07:00
2ded067fd2 [Bugfix] Fix CUDA arch flags for MoE permute (#21426)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-07-24 03:23:59 -07:00
13abd0eaf9 [Model] Officially support Emu3 with Transformers backend (#21319)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-24 03:22:12 -07:00
61b8cea3b4 [Attention] Optimize FlashInfer MetadataBuilder Build call (#21137)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-07-24 03:21:46 -07:00
526078a96c bump flashinfer to v0.2.8 (#21385)
Signed-off-by: cjackal <44624812+cjackal@users.noreply.github.com>
2025-07-24 03:20:38 -07:00
6da0078523 [Feat] Allow custom naming of vLLM processes (#21445)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-07-24 03:15:23 -07:00
73e3949d07 [Misc] Improve comment for DPEngineCoreActor._set_cuda_visible_devices() (#21501)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-07-24 03:13:40 -07:00
6eca337ce0 Replace --expand-tools-even-if-tool-choice-none with --exclude-tools-when-tool-choice-none for v0.10.0 (#20544)
Signed-off-by: okada <kokuzen@gmail.com>
Signed-off-by: okada shintarou <okada@preferred.jp>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-24 02:56:36 -07:00
85bda9e7d0 remove GLM-4.5 quantization wrong Code (#21435) 2025-07-24 01:52:43 -07:00
610852a423 [Core] Support model loader plugins (#21067)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-07-24 01:49:44 -07:00
f0f4de8f26 [Misc] Fix duplicate FusedMoEConfig debug messages (#21455)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-24 01:27:30 -07:00
fc5f756db4 [v1][Core] Clean up usages of SpecializedManager (#21407)
Signed-off-by: Zhou Fang <fang.github@gmail.com>
2025-07-24 00:40:11 -07:00
e74bfc70e4 [TPU][Bugfix] fix moe layer (#21340)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
Co-authored-by: Simon Mo <simon.mo@hey.com>
2025-07-24 00:38:39 -07:00
90eeea8f85 [Bugfix][ROCm] Fix for warp_size uses on host (#21205)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-07-24 00:37:19 -07:00
dde295a934 Deduplicate Transformers backend code using inheritance (#21461)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-24 00:16:23 -07:00
6d8d0a24c0 Add think chunk (#21333)
Signed-off-by: Julien Denize <julien.denize@mistral.ai>
2025-07-23 21:51:32 -07:00
11ef7a611e [BugFix] Set CUDA_VISIBLE_DEVICES before spawning the subprocesses (#21211)
Signed-off-by: Yinghai Lu <yinghai@thinkingmachines.ai>
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Rui Qiao <ruisearch42@gmail.com>
2025-07-23 21:44:04 -07:00
dc2f159f8a Dump input metadata on crash for async scheduling (#21258)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-23 21:10:30 -07:00
d5b981f8b1 [DP] Internal Load Balancing Per Node [one-pod-per-node] (#21238)
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Signed-off-by: Nick Hill <nhill@redhat.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Nick Hill <nhill@redhat.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-07-23 20:57:32 -07:00
eec6942014 [BugFix] Fix KVConnector TP worker aggregation (#21473)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-23 20:56:49 -07:00
fd48d99ffd [BugFix]: Batch generation from prompt_embeds fails for long prompts (#21390)
Signed-off-by: KazusatoOko <kazusto.oko@sakana.ai>
Co-authored-by: KazusatoOko <kazusto.oko@sakana.ai>
2025-07-23 20:43:17 -07:00
f8c15c4efb [Bugfix] Fix example disagg_example_p2p_nccl_xpyd.sh zombie process (#21437)
Signed-off-by: David Chen <530634352@qq.com>
2025-07-23 20:42:11 -07:00
aa08a954f9 [Bugfix] Fix casing warning (#21468)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-07-23 20:41:23 -07:00
13e4ee1dc3 [XPU][UT] increase intel xpu CI test scope (#21492)
Signed-off-by: Ma, Liangliang <liangliang.ma@intel.com>
2025-07-23 20:24:04 -07:00
772ce5af97 [Misc] Add dummy maverick test to CI (#21324)
Signed-off-by: Ming Yang <minos.future@gmail.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-07-23 20:22:42 -07:00
63d92abb7c [Frontend] Set MAX_AUDIO_CLIP_FILESIZE_MB via env var instead of hardcoding (#21374)
Signed-off-by: Deven Labovitch <deven@videa.ai>
2025-07-23 20:22:19 -07:00
11599b0e1f feat(gguf_loader): accept HF repo paths & URLs for GGUF (#20793)
Signed-off-by: Hardik <hardikgupta1999@gmail.com>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-07-23 20:21:02 -07:00
f3137cdd81 [Core] Freeze gc during cuda graph capture to speed up init (#21146)
Signed-off-by: Codex <codex@openai.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-23 17:20:14 -07:00
82ec66f514 [V0 Deprecation] Remove Prompt Adapters (#20588)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-23 16:36:48 -07:00
78c13e30e1 [V1] Fix local chunked attention always disabled (#21419)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-07-23 15:59:30 -07:00
5c9b807b34 [Core] Add reload_weights RPC method (#20096)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-07-23 14:24:52 -07:00
14bf19e39f [TPU][TEST] Fix the downloading issue in TPU v1 test 11. (#21418)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-07-23 11:29:36 -07:00
4ac7713e32 Add test case for compiling multiple graphs (#21044)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-07-23 11:00:47 -07:00
8560a5b258 [Core][Model] PrithviMAE Enablement on vLLM v1 engine (#20577)
Signed-off-by: Christian Pinto <christian.pinto@ibm.com>
2025-07-23 11:00:23 -07:00
316b1bf706 [Tests] Add tests for headless internal DP LB (#21450)
Signed-off-by: Nick Hill <nhill@redhat.com>
2025-07-23 07:49:25 -07:00
7c734ee09b [Bugfix][Qwen][DCA] fixes bug in dual-chunk-flash-attn backend for qwen 1m models. (#21364)
Signed-off-by: Tao He <linzhu.ht@alibaba-inc.com>
2025-07-23 06:34:37 -07:00
f59ec35b7f [V1] Check all pooling tasks during profiling (#21299)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-23 05:53:26 -07:00
2671334d45 [Model] add Hunyuan V1 Dense Model support. (#21368)
Signed-off-by: Asher Zhang <asherszhang@tencent.com>
2025-07-23 03:54:08 -07:00
2cc5016a19 [Docs] Clean up v1/metrics.md (#21449)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-07-23 03:37:25 -07:00
6929f8b437 [Misc] fixed nvfp4_moe test failures due to invalid kwargs (#21246)
Signed-off-by: Yang Chen <yangche@fb.com>
2025-07-23 01:41:43 -07:00
32ec9e2f2a Mamba V2 Test not Asserting Failures. (#21379)
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
2025-07-23 01:40:27 -07:00
accac82928 [Sampler] Introduce logprobs mode for logging (#21398)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-07-23 01:39:25 -07:00
23637dcdef [Docs] Fix bullets and grammars in tool_calling.md (#21440)
Signed-off-by: windsonsea <haifeng.yao@daocloud.io>
2025-07-23 01:23:20 -07:00
6364af92f8 Fixed typo in profiling logs (#21441) 2025-07-23 01:18:54 -07:00
7aaa2bd5a8 [Bugfix] ensure tool_choice is popped when tool_choice:null is passed in json payload (#19679)
Signed-off-by: Guillaume Calmettes <gcalmettes@scaleway.com>
2025-07-23 00:30:05 -07:00
2f5c14de6a add clear messages for deprecated models (#21424)
Signed-off-by: youkaichao <youkaichao@gmail.com>
2025-07-23 00:03:16 -07:00
f002e9a870 [Cleanup] Only log MoE DP setup warning if DP is enabled (#21315)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-23 00:02:48 -07:00
a1f3610fc6 [Core] Add basic unit test for maybe_evict_cached_block (#21400)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-07-23 00:02:02 -07:00
4ecedd1806 [Bugfix] Fix nightly transformers CI failure (#21427)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-23 00:01:01 -07:00
107111a859 Changing "amdproduction" allocation. (#21409)
Signed-off-by: Alexei V. Ivanov <alexei.ivanov@amd.com>
2025-07-22 20:48:31 -07:00
2dec7c1a5d [Bugfix][CUDA] fixes CUDA FP8 kv cache dtype supported (#21420)
Signed-off-by: elvischenv <219235043+elvischenv@users.noreply.github.com>
2025-07-22 20:34:50 -07:00
08d2bd78da [BUGFIX] deepseek-v2-lite failed due to fused_qkv_a_proj name update (#21414)
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
2025-07-22 20:33:57 -07:00
4f76a05f4f [BugFix] Update python to python3 calls for image; fix prefix & input calculations. (#21391)
Signed-off-by: Eric Hanley <ericehanley@google.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-07-22 20:33:00 -07:00
f154bb9ff0 Simplify weight loading in Transformers backend (#21382)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-22 20:29:43 -07:00
3ec7170ff1 [Bugfix][ROCm][Build] Fix build regression on ROCm (#21393)
Signed-off-by: Gregory Shtrasberg <Gregory.Shtrasberg@amd.com>
2025-07-22 20:27:41 -07:00
c401c64b4c [CI/Build] Fix model executor tests (#21387)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-22 20:25:37 -07:00
b77c7d327f [BugFix] Fix ray import error mem cleanup bug (#21381)
Signed-off-by: Travis Johnson <tsjohnso@us.ibm.com>
Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>
Co-authored-by: Travis Johnson <tsjohnso@us.ibm.com>
2025-07-22 16:19:55 -07:00
35bc8bd5fb [Misc] Copy HF_TOKEN env var to Ray workers (#21406)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-07-22 16:18:42 -07:00
4594fc3b28 [Model] Add Qwen3CoderToolParser (#21396)
Signed-off-by: simon-mo <xmo@berkeley.edu>
Co-authored-by: simon-mo <xmo@berkeley.edu>
2025-07-22 15:05:57 -07:00
ae268b6326 Fix Flashinfer Allreduce+Norm enable disable calculation based on fi_allreduce_fusion_max_token_num (#21325)
Signed-off-by: XIn Li <xinli@nvidia.com>
2025-07-22 12:42:31 -07:00
35366ae57c [CI/Build] Fix test failure due to updated model repo (#21375)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-22 08:39:35 -07:00
2226d5bd85 [Bugfix] Decode Tokenized IDs to Strings for hf_processor in llm.chat() with model_impl=transformers (#21353)
Signed-off-by: ariG23498 <aritra.born2fly@gmail.com>
2025-07-22 08:27:28 -07:00
44554a0068 Add tokenization_kwargs to encode for embedding model truncation (#21033) 2025-07-22 08:24:00 -07:00
226b452a20 Revert "[Refactor] Fix Compile Warning #1444-D (#21208)" (#21384)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-22 08:22:10 -07:00
f38ee34a0a [feat] Enable mm caching for transformers backend (#21358)
Signed-off-by: raushan <raushan@huggingface.co>
2025-07-22 08:18:46 -07:00
b194557a6c Adds parallel model weight loading for runai_streamer (#21330)
Signed-off-by: bbartels <benjamin@bartels.dev>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-07-22 08:15:53 -07:00
774d0c014b [Perf] Cuda Kernel for Per Token Group Quant (#21083)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-22 07:27:15 -07:00
2c8db17cfd [feat]: add SM100 support for cutlass FP8 groupGEMM (#20447)
Signed-off-by: Duncan Moss <djm.moss@gmail.com>
Signed-off-by: jiahanc <173873397+jiahanc@users.noreply.github.com>
Co-authored-by: jiahanc <173873397+jiahanc@users.noreply.github.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-07-22 07:27:12 -07:00
4fb56914c5 [perf] Add fused MLA QKV + strided layernorm (#21116)
Signed-off-by: Mickael Seznec <mickael@mistral.ai>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-07-22 07:07:44 -07:00
0df4d9b06b [Misc] unify variable for LLM instance v2 (#21356)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-07-22 06:32:36 -07:00
ed25054577 [Core] Introduce popleft_n and append_n in FreeKVCacheBlockQueue to further optimize block_pool (#21222)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-07-22 06:17:47 -07:00
10904e6d75 [benchmark] Port benchmark request sent optimization to benchmark_serving (#21209)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-07-22 05:28:00 -07:00
a32237665d [Core] Optimize update checks in LogitsProcessor (#21245)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-07-22 05:27:18 -07:00
bc8a8ce5ec [Misc] Remove deprecated args in v0.10 (#21349)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-07-22 05:26:39 -07:00
32142b3c62 [Bugfix] Fix eviction cached blocked logic (#21357)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-07-22 01:18:40 -07:00
82b8027be6 Add arcee model (#21296)
Signed-off-by: alyosha-swamy <raghav@arcee.ai>
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-22 00:57:43 -07:00
3779eb8c81 [Feature][eplb] add verify ep or tp or dp (#21102)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-07-21 23:41:14 -07:00
9e23ad9655 Update fp4 quantize API (#21327)
Signed-off-by: Shu Wang <shuw@nvidia.com>
2025-07-21 23:40:21 -07:00
e69a92a1ce [Bug] DeepGemm: Fix Cuda Init Error (#21312)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-21 23:36:18 -07:00
8425f785ad [Misc] DeepEPHighThroughtput - Enable Inductor pass (#21311)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-07-21 23:35:45 -07:00
c17231e827 Fix kv_cache_dtype handling for out-of-tree HPU plugin (#21302)
Signed-off-by: Konrad Zawora <kzawora@habana.ai>
Signed-off-by: Chendi.Xue <chendi.xue@intel.com>
Co-authored-by: Chendi.Xue <chendi.xue@intel.com>
2025-07-21 23:35:14 -07:00
6e5b5ca580 [Refactor] Fix Compile Warning #1444-D (#21208)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-21 23:33:51 -07:00
488d8a986a [V1] [Hybrid] Add new test to verify that hybrid views into KVCacheTensor are compatible (#21300)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-07-21 23:31:18 -07:00
af376ca19d [Core] Minimize number of dict lookup in _maybe_evict_cached_block (#21281)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-07-21 22:37:34 -07:00
e7b2042681 Revert "[Performance] Performance improvements in non-blockwise fp8 CUTLASS MoE (#20762) (#21334)
Signed-off-by: Ming Yang <minos.future@gmail.com>
2025-07-21 21:49:01 -07:00
90f1e55421 [Intel GPU] Ray Compiled Graph avoid NCCL for Intel GPU (#21338)
Signed-off-by: ratnampa <ratnam.parikh@intel.com>
2025-07-21 21:48:27 -07:00
5e70dcd6e6 [Doc] Fix CPU doc format (#21316)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-07-21 21:47:49 -07:00
25d585ab7b [XPU] Enable external_launcher to serve as an executor via torchrun (#21021)
Signed-off-by: chzhang <chaojun.zhang@intel.com>
2025-07-21 21:47:35 -07:00
8d0a01a5f2 [v1][sampler] Inplace logprobs comparison to get the token rank (#21283)
Signed-off-by: Lu Fang <lufang@fb.com>
2025-07-21 13:47:47 -07:00
0ec82edda5 [perf] Speed up align sum kernels (#21079)
Signed-off-by: Himanshu Jaju <hj@mistral.ai>
2025-07-21 11:19:23 -07:00
005ae9be6c Fix bad lm-eval fork (#21318) 2025-07-21 10:47:51 -07:00
29d1ffc5b4 [DP] Fix Prometheus Logging (#21257)
Signed-off-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
2025-07-21 09:11:35 -07:00
304dce7ec0 [Attention] Clean up iRoPE in V1 (#21188)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Co-authored-by: Michael Goin <mgoin64@gmail.com>
2025-07-21 09:10:30 -07:00
6ece16c4fe [Misc] Add dummy maverick test (#21199)
Signed-off-by: Ming Yang <minos.future@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-07-21 09:08:09 -07:00
a0e827e07c [BugFix] make utils.current_stream thread-safety (#21252) (#21253)
Signed-off-by: simpx <simpxx@gmail.com>
2025-07-21 09:07:36 -07:00
a15a50fc17 [CPU] Enable shared-memory based pipeline parallel for CPU backend (#21289)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-07-21 09:07:08 -07:00
6dda13c86b [Misc] Add sliding window to flashinfer test (#21282)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-21 08:37:49 -07:00
6b46c4b653 Add Nvidia ModelOpt config adaptation (#19815)
Signed-off-by: Zhiyu Cheng <zhiyuc@nvidia.com>
2025-07-21 10:02:58 -04:00
d97841078b [Misc] unify variable for LLM instance (#20996)
Signed-off-by: Andy Xie <andy.xning@gmail.com>
2025-07-21 12:18:33 +01:00
e6b90a2805 [Docs] Make tables more space efficient in supported_models.md (#21291)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-21 02:25:02 -07:00
be54a951a3 [Docs] Fix hardcoded links in docs (#21287)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-21 02:23:57 -07:00
042af0c8d3 [Model][1/N] Support multiple poolers at model level (#21227)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-21 02:22:21 -07:00
378d33c392 [Bugfix] Fix missing placeholder in logger debug (#21280)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-20 22:50:06 -07:00
940af1f03a Add the instruction to run e2e validation manually before release (#21023)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-07-20 22:29:18 -07:00
92615d7fe8 [Docs] Add RFC Meeting to Issue Template (#21279)
Signed-off-by: simon-mo <simon.mo@hey.com>
2025-07-20 21:58:07 -07:00
8188196a1c [CI] Cleanup modelscope version constraint in Dockerfile (#21243)
Signed-off-by: Kay Yan <kay.yan@daocloud.io>
2025-07-20 20:13:02 -07:00
7ba34b1241 [bugfix] fix syntax warning caused by backslash (#21251) 2025-07-20 17:12:10 +00:00
9499e26e2a [Model] Support VLMs with transformers backend (#20543)
Signed-off-by: raushan <raushan@huggingface.co>
Signed-off-by: Isotr0py <2037008807@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-07-20 13:25:50 +00:00
51ba839555 [Model] use AutoWeightsLoader for bart (#18299)
Signed-off-by: calvin chen <120380290@qq.com>
2025-07-20 08:15:50 +00:00
d1fb65bde3 Enable v1 metrics tests (#20953)
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
2025-07-20 03:22:02 +00:00
3a1d8940ae [TPU] support fp8 kv cache quantization (#19292)
Signed-off-by: Chengji Yao <chengjiyao@google.com>
2025-07-20 03:01:00 +00:00
2b504eb770 [Docs] [V1] Update docs to remove enforce_eager limitation for hybrid models. (#21233)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-07-19 16:09:58 -07:00
10eb24cc91 GLM-4 Update (#20736)
Signed-off-by: zRzRzRzRzRzRzR <2448370773@qq.com>
Signed-off-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Isotr0py <mozf@mail2.sysu.edu.cn>
Co-authored-by: Lu Fang <fanglu@fb.com>
2025-07-19 22:40:31 +00:00
2e8cbb58f3 [BugFix] Fix full cuda graph slot_mapping (#21228)
Signed-off-by: fhl2000 <63384265+fhl2000@users.noreply.github.com>
2025-07-19 14:13:18 -07:00
752c6ade2e [V0 Deprecation] Deprecate BlockSparse Attention & Phi3-Small (#21217)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-19 13:53:17 -07:00
881e3cbe3b [V1] [Hybrid] Enable piecewise CUDA Graph for mamba layers (#21194)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-07-19 19:27:21 +00:00
9f414a12ad [BugFix] Make PD work with Ray (#21072)
Signed-off-by: Kourosh Hakhamaneshi <kourosh@anyscale.com>
2025-07-19 08:46:50 -07:00
6a971ed692 [Docs] Update the link to the 'Prometheus/Grafana' example (#21225) 2025-07-19 06:58:07 -07:00
da6579bf41 [CI/CD][bugfix]fix: error argument to loads has incompatible type (#21223)
Signed-off-by: Sungjae Lee <33976427+llsj14@users.noreply.github.com>
Signed-off-by: Sungjae Lee <sung-jae.lee@navercorp.com>
2025-07-19 05:16:48 -07:00
c81259d33a Fix/remove some broken model executor tests (#21224)
Signed-off-by: Rabi Mishra <ramishra@redhat.com>
2025-07-19 12:15:07 +00:00
e3a0e43d7f [bugfix] Fix auto thread-binding when world_size > 1 in CPU backend and refactor code (#21032)
Signed-off-by: jiang1.li <jiang1.li@intel.com>
2025-07-19 05:13:55 -07:00
b3d82108e7 [Bugfix][Frontend] Fix openai CLI arg middleware (#21220)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-07-19 02:40:38 -07:00
6d0734c562 [NVIDIA] Add SM100 Flashinfer MoE blockscale fp8 backend for low latency (#20645)
Signed-off-by: kaixih <kaixih@nvidia.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-07-19 02:33:01 -07:00
7d94577138 Add torch golden impl for moe_align_block_size kernel test (#20653)
Signed-off-by: Shixian Cui <shixian@amazon.com>
Co-authored-by: Shixian Cui <shixian@amazon.com>
2025-07-19 02:32:36 -07:00
59f935300c [BugFix] Fix potential cuda-graph IMA (#21196)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-07-19 02:18:47 -07:00
18e519ec86 [Bugfix] Fix ndarray video color from VideoAsset (#21064)
Signed-off-by: Isotr0py <2037008807@qq.com>
2025-07-19 02:17:16 -07:00
1eaff27815 [V0 deprecation] Remove long context LoRA (#21169)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-19 02:15:41 -07:00
cf8cc32674 Fix a couple of Voxtral tests (#21218)
Signed-off-by: Huy Do <huydhn@gmail.com>
2025-07-19 09:13:41 +00:00
3a2cb2649d [Misc][Tools][Benchmark] Add readme file for auto_tune script (#20779)
Signed-off-by: Chenyaaang <chenyangli@google.com>
2025-07-19 09:06:59 +00:00
3e04107d97 [Model] EXAONE 4.0 model support (#21060)
Signed-off-by: Deepfocused <rlawhdrhs27@gmail.com>
Signed-off-by: woongsik <rlawhdrhs27@gmail.com>
2025-07-19 14:25:44 +08:00
37bd8d6e4c [Bug] DeepGemm: Fix TypeError: per_block_cast_to_fp8() missing 1 required positional argument: 'use_ue8m0' for SM100 (#21187)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-18 23:25:22 -07:00
468e2400fe [BugFix][CPU] Fix TorchSDPABackendImpl doesn't have use_irope (#21200)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-07-18 23:18:48 -07:00
dcc6cfb991 [Kernel][Performance] Tweak MoE Batched silu_mul_fp8_quant_deep_gemm kernel (#21193)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-07-18 23:09:51 -07:00
dd572c0ab3 [V0 Deprecation] Remove V0 Spec Decode workers (#21152)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-18 21:47:50 -07:00
9ffe905a41 [Bugfix][Model] Fix LoRA for Mistral-Small-3.1-24B-Instruct-2503 (#21183)
Signed-off-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
Co-authored-by: Varun Sundar Rabindranath <varun@neuralmagic.com>
2025-07-18 21:15:03 -07:00
9a9fda1423 [Core] Support Local Chunked Attention for Hybrid KV Cache (#19351)
Signed-off-by: Lucia Fang <fanglu@fb.com>
Signed-off-by: Lu Fang <fanglu@meta.com>
Signed-off-by: Lu Fang <fanglu@fb.com>
Co-authored-by: Lu Fang <fanglu@meta.com>
2025-07-18 20:48:38 -07:00
466e878f2a [Quantization] Enable BNB support for more MoE models (#21100)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-18 17:52:02 -07:00
217937221b Elastic Expert Parallel Initial Support (#20775)
Signed-off-by: Rui Qiao <ruisearch42@gmail.com>
2025-07-18 17:46:09 -07:00
5782581acf [Bugfix] Voxtral on Blackwell GPUs (RTX 50 series) (#21077)
Signed-off-by: hax0r31337 <liulihaocaiqwq@gmail.com>
2025-07-18 18:40:18 -04:00
0f199f197b [Core] Avoid KVCacheBlock.__eq__ invocations in FreeKVCacheBlockQueue (#21005)
Signed-off-by: Jialin Ouyang <jialino@meta.com>
2025-07-18 12:34:40 -07:00
b2eb2b5ad7 [Kernel] Apply torch.Tag.needs_fixed_stride_order only for torch==2.6.0 (#19346)
Signed-off-by: rzou <zou3519@gmail.com>
2025-07-18 14:10:21 -04:00
21274ab476 [CI] Update CODEOWNERS for vllm/compilation (#21185)
Signed-off-by: Richard Zou <zou3519@gmail.com>
2025-07-18 06:51:12 -07:00
ed8cbfedf8 Let GraniteMoeAttention use YaRN (#21174)
Signed-off-by: Thomas Parnell <tpa@zurich.ibm.com>
2025-07-18 05:52:52 -07:00
45badd05d0 [Core] Set pooling params based on task and model (#21128)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-18 05:41:17 -07:00
4adc66f64d [Bugfix] Allocate less memory in non-batched CUTLASS MoE (#21121)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
2025-07-18 18:55:52 +08:00
55ad648715 [Doc] Fix typo in model name (#21178)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-18 03:55:10 -07:00
5895afd780 [Bugfix] The special_tokens in tokenizer should also be controlled by do_lower_case in encoder_config. (#20750)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-07-18 09:10:47 +00:00
ca4eb82bcb [Model] Re-add the implicit conversion feature for as_seq_cls_model (#21103)
Signed-off-by: wang.yuqi <noooop@126.com>
2025-07-18 07:15:07 +00:00
ba2dfbb0c2 [Misc] Make MM embedding merge interface explicit in model runner (#21147)
Signed-off-by: Roger Wang <hey@rogerw.me>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
2025-07-18 07:13:57 +00:00
1bf65138f6 [benchmark] Sending request strictly follows the random intervals (#21108)
Signed-off-by: Jialin Ouyang <Jialin.Ouyang@gmail.com>
2025-07-18 06:22:08 +00:00
54cf1cae62 [Misc] Do not print async output warning for v1 (#21151)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-17 21:57:02 -07:00
5780121c95 [Perf] Add swap_ab to SM90 FP8 non-block CUTLASS moe grouped gemm (#20911)
Signed-off-by: Shixian Cui <shixian@amazon.com>
Co-authored-by: Shixian Cui <shixian@amazon.com>
2025-07-18 04:34:43 +00:00
c7d8724e78 [Core] FlashInfer CUTLASS fused MoE backend (NVFP4) (#20037)
Signed-off-by: shuw <shuw@nvidia.com>
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: mgoin <mgoin64@gmail.com>
2025-07-17 21:32:45 -07:00
b38baabcf9 [Doc] Add inplace weights loading example (#19640)
Signed-off-by: 22quinn <33176974+22quinn@users.noreply.github.com>
2025-07-17 21:12:23 -07:00
89cab4d01f [Attention] Make local attention backend agnostic (#21093) 2025-07-18 00:10:42 -04:00
b9a21e9173 [Docs] Update supported models documentation with missing models (#20844)
Signed-off-by: Lu Fang <fanglu@fb.com>
2025-07-17 20:12:13 -07:00
c4e3b12524 [Docs] Add minimal demo of Ray Data API usage (#21080)
Signed-off-by: Ricardo Decal <rdecal@anyscale.com>
2025-07-17 20:09:19 -07:00
8dfb45ca33 [Bugfix] Fix the tensor non-contiguous issue for Flashinfer TRT-LLM backend attention kernel (#21133) 2025-07-18 00:35:58 +00:00
8a8fc94639 [Log] Debugging Log with more Information (#20770)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-07-18 00:19:46 +00:00
4de7146351 [V0 deprecation] Remove V0 HPU backend (#21131)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-07-17 16:37:36 -07:00
ac9fb732a5 On environments where numa cannot be detected we get 0 (#21115)
Signed-off-by: Eric Curtin <ecurtin@redhat.com>
2025-07-17 18:52:17 +00:00
a3a6c695f4 [Misc] Qwen MoE model supports LoRA (#20932)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-17 18:32:52 +00:00
90bd2ab6e3 [Model] Update pooling model interface (#21058)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-07-17 16:05:40 +00:00
9fb2d22032 [Performance] Performance improvements in non-blockwise fp8 CUTLASS MoE (#20762)
Signed-off-by: ElizaWszola <ewszola@redhat.com>
2025-07-17 09:56:44 -04:00
2d6a38209b [Docs] Move code block out of admonition now that it's short (#21118)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-17 06:12:29 -07:00
89e3c4e9b4 [Misc] Avoid unnecessary import (#21106)
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-07-17 12:57:41 +00:00
fe8a2c544a [Docs] Improve docstring formatting for FusedMoEParallelConfig.make (#21117)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-07-17 04:13:00 -07:00
4ef00b5cac [VLM] Add Nemotron-Nano-VL-8B-V1 support (#20349)
Signed-off-by: Kyle Huang <kylhuang@nvidia.com>
Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
2025-07-17 03:07:55 -07:00
5a7fb3ab9e [Model] Add ToolParser and MoE Config for Hunyuan A13B (#20820)
Signed-off-by: Asher Zhang <asherszhang@tencent.com>
2025-07-17 09:10:09 +00:00
11dfdf21bf [Kernel] DeepGemm MoE : Integrate triton permute / unpermute kernels (#20903)
Signed-off-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
Co-authored-by: Varun Sundar Rabindranath <vsundarr@redhat.com>
2025-07-17 08:10:37 +00:00
fdc5b43d20 [Bugfix]: Fix final_res_batch list index out of range error (#21055)
Signed-off-by: chaunceyjiang <chaunceyjiang@gmail.com>
2025-07-17 00:29:09 -07:00
c5b8b5953a [Misc] Fix PhiMoE expert mapping (#21085)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
2025-07-17 05:47:49 +00:00
4fcef49ec4 [V1] [KVConnector] Fix MultiprocExecutor worker output aggregation (#21048)
Signed-off-by: David Ben-David <davidb@pliops.com>
Co-authored-by: David Ben-David <davidb@pliops.com>
2025-07-17 13:29:45 +08:00
8a4e5c5f3c [V1][P/D]Enhance Performance and code readability for P2pNcclConnector (#20906)
Signed-off-by: Abatom <abzhonghua@gmail.com>
2025-07-16 22:13:00 -07:00
76b494444f [Attention] Refactor attention metadata builder interface (#20466)
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
2025-07-17 04:44:25 +00:00
28a6d5423d [Bugfix] Fix Machete zero point issue for GPTQ models on SM90 (#21066)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-16 19:54:45 -07:00
58760e12b1 [TPU] Start using python 3.12 (#21000)
Signed-off-by: Xiongfei Wei <isaacwxf23@gmail.com>
2025-07-16 19:37:44 -07:00
a50d918225 [Docker] Allow FlashInfer to be built in the ARM CUDA Dockerfile (#21013)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-16 19:37:13 -07:00
c9ba8104ed [Bugfix] weight loading use correct tp_group with patch_tensor_parallel_group (#21024)
Signed-off-by: KevinXiong-C <kevin_xiong1997@outlook.com>
2025-07-16 19:36:36 -07:00
4e7dfbe7b4 Update PyTorch to torch==2.7.1 for CUDA (#21011)
Signed-off-by: mgoin <mgoin64@gmail.com>
2025-07-17 02:30:44 +00:00
72ad273582 Remove torch_xla.tpu.version() from pallas.py. (#21065)
Signed-off-by: Qiliang Cui <derrhein@gmail.com>
2025-07-17 00:25:26 +00:00
632 changed files with 34983 additions and 30350 deletions

View File

@ -74,7 +74,7 @@ Here is an example of one test inside `latency-tests.json`:
In this example:
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
- The `parameters` attribute control the command line arguments to be used for `vllm bench latency`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `vllm bench latency`. For example, the corresponding command line arguments for `vllm bench latency` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.
@ -82,13 +82,13 @@ WARNING: The benchmarking script will save json results by itself, so please do
### Throughput test
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `vllm bench throughput`.
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
### Serving test
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
We test the throughput by using `vllm bench serve` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
```json
[
@ -118,8 +118,8 @@ Inside this example:
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
- The `server-parameters` includes the command line arguments for vLLM server.
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `benchmark_serving.py`
- The `client-parameters` includes the command line arguments for `vllm bench serve`.
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `vllm bench serve`
The number of this test is less stable compared to the delay and latency benchmarks (due to randomized sharegpt dataset sampling inside `benchmark_serving.py`), but a large change on this number (e.g. 5% change) still vary the output greatly.

View File

@ -100,7 +100,7 @@ if __name__ == "__main__":
raw_result = json.loads(f.read())
if "serving" in str(test_file):
# this result is generated via `benchmark_serving.py`
# this result is generated via `vllm bench serve` command
# attach the benchmarking command to raw_result
try:
@ -120,7 +120,7 @@ if __name__ == "__main__":
continue
elif "latency" in f.name:
# this result is generated via `benchmark_latency.py`
# this result is generated via `vllm bench latency` command
# attach the benchmarking command to raw_result
try:
@ -148,7 +148,7 @@ if __name__ == "__main__":
continue
elif "throughput" in f.name:
# this result is generated via `benchmark_throughput.py`
# this result is generated via `vllm bench throughput` command
# attach the benchmarking command to raw_result
try:

View File

@ -73,7 +73,7 @@ get_current_llm_serving_engine() {
echo "Container: vllm"
# move to a completely irrelevant directory, to avoid import vllm from current folder
export CURRENT_LLM_SERVING_ENGINE=vllm
return
fi
}
@ -95,12 +95,14 @@ json2args() {
}
kill_gpu_processes() {
pkill -f python
pkill -f python3
pkill -f tritonserver
pkill -f pt_main_thread
pkill -f text-generation
pkill -f lmdeploy
pkill -f '[p]ython'
pkill -f '[p]ython3'
pkill -f '[t]ritonserver'
pkill -f '[p]t_main_thread'
pkill -f '[t]ext-generation'
pkill -f '[l]mdeploy'
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pkill -f '[V]LLM'
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
sleep 1
@ -125,7 +127,7 @@ ensure_installed() {
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# run serving tests using `vllm bench serve` command
# $1: a json file specifying serving test cases
local serving_test_file
@ -225,7 +227,7 @@ run_serving_tests() {
if [[ "$dataset_name" = "sharegpt" ]]; then
client_command="python3 benchmark_serving.py \
client_command="vllm bench serve \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
@ -246,7 +248,7 @@ run_serving_tests() {
sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len')
sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len')
client_command="python3 benchmark_serving.py \
client_command="vllm bench serve \
--backend $backend \
--tokenizer /tokenizer_cache \
--model $model \
@ -265,13 +267,13 @@ run_serving_tests() {
$client_args"
else
echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name."
exit 1
fi
echo "Running test case $test_name with qps $qps"
echo "Client command: $client_command"
@ -302,7 +304,7 @@ run_serving_tests() {
}
run_genai_perf_tests() {
# run genai-perf tests
# run genai-perf tests
# $1: a json file specifying genai-perf test cases
local genai_perf_test_file
@ -311,14 +313,14 @@ run_genai_perf_tests() {
# Iterate over genai-perf tests
jq -c '.[]' "$genai_perf_test_file" | while read -r params; do
# get the test name, and append the GPU type back to it.
test_name=$(echo "$params" | jq -r '.test_name')
test_name=$(echo "$params" | jq -r '.test_name')
# if TEST_SELECTOR is set, only run the test cases that match the selector
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
echo "Skip test case $test_name."
continue
fi
# prepend the current serving engine to the test name
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
@ -369,10 +371,10 @@ run_genai_perf_tests() {
qps=$num_prompts
echo "now qps is $qps"
fi
new_test_name=$test_name"_qps_"$qps
backend=$CURRENT_LLM_SERVING_ENGINE
if [[ "$backend" == *"vllm"* ]]; then
backend="vllm"
fi
@ -413,7 +415,7 @@ prepare_dataset() {
do
cat sonnet.txt >> sonnet_4x.txt
done
}
main() {

View File

@ -126,7 +126,8 @@ kill_gpu_processes() {
ps -aux
lsof -t -i:8000 | xargs -r kill -9
pgrep python3 | xargs -r kill -9
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pgrep VLLM | xargs -r kill -9
# wait until GPU memory usage smaller than 1GB
if command -v nvidia-smi; then
@ -164,7 +165,7 @@ upload_to_buildkite() {
}
run_latency_tests() {
# run latency tests using `benchmark_latency.py`
# run latency tests using `vllm bench latency` command
# $1: a json file specifying latency test cases
local latency_test_file
@ -205,7 +206,7 @@ run_latency_tests() {
fi
fi
latency_command=" $latency_envs python3 benchmark_latency.py \
latency_command=" $latency_envs vllm bench latency \
--output-json $RESULTS_FOLDER/${test_name}.json \
$latency_args"
@ -231,7 +232,7 @@ run_latency_tests() {
}
run_throughput_tests() {
# run throughput tests using `benchmark_throughput.py`
# run throughput tests using `vllm bench throughput`
# $1: a json file specifying throughput test cases
local throughput_test_file
@ -272,7 +273,7 @@ run_throughput_tests() {
fi
fi
throughput_command=" $throughput_envs python3 benchmark_throughput.py \
throughput_command=" $throughput_envs vllm bench throughput \
--output-json $RESULTS_FOLDER/${test_name}.json \
$throughput_args"
@ -297,7 +298,7 @@ run_throughput_tests() {
}
run_serving_tests() {
# run serving tests using `benchmark_serving.py`
# run serving tests using `vllm bench serve` command
# $1: a json file specifying serving test cases
local serving_test_file
@ -393,7 +394,7 @@ run_serving_tests() {
# pass the tensor parallel size to the client so that it can be displayed
# on the benchmark dashboard
client_command="python3 benchmark_serving.py \
client_command="vllm bench serve \
--save-result \
--result-dir $RESULTS_FOLDER \
--result-filename ${new_test_name}.json \
@ -447,7 +448,7 @@ main() {
(which jq) || (apt-get update && apt-get -y install jq)
(which lsof) || (apt-get update && apt-get install -y lsof)
# get the current IP address, required by benchmark_serving.py
# get the current IP address, required by `vllm bench serve` command
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
# turn of the reporting of the status of each request, to clean up the terminal output
export VLLM_LOGGING_LEVEL="WARNING"

View File

@ -108,7 +108,6 @@ fi
if [[ $commands == *" kernels/attention"* ]]; then
commands="${commands} \
--ignore=kernels/attention/test_attention_selector.py \
--ignore=kernels/attention/test_blocksparse_attention.py \
--ignore=kernels/attention/test_encoder_decoder_attn.py \
--ignore=kernels/attention/test_flash_attn.py \
--ignore=kernels/attention/test_flashinfer.py \

View File

@ -6,15 +6,16 @@ set -ex
# allow to bind to different cores
CORE_RANGE=${CORE_RANGE:-48-95}
# used for TP/PP E2E test
OMP_CORE_RANGE=${OMP_CORE_RANGE:-48-95}
NUMA_NODE=${NUMA_NODE:-1}
export CMAKE_BUILD_PARALLEL_LEVEL=32
# Setup cleanup
remove_docker_container() {
set -e;
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
remove_docker_container() {
set -e;
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
}
trap remove_docker_container EXIT
remove_docker_container
@ -24,8 +25,8 @@ numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
# Run the image, setting --shm-size=4g for tensor parallel.
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --env VLLM_CPU_CI_ENV=1 --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --env VLLM_CPU_CI_ENV=1 --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
function cpu_tests() {
set -e
@ -68,7 +69,7 @@ function cpu_tests() {
docker exec cpu-test-"$NUMA_NODE" bash -c "
set -e
pytest -s -v \
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
# Note: disable it until supports V1
# Run AWQ test
@ -78,17 +79,16 @@ function cpu_tests() {
# tests/quantization/test_ipex_quant.py"
# online serving
docker exec cpu-test-"$NUMA_NODE" bash -c "
docker exec cpu-test-"$NUMA_NODE" bash -c '
set -e
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
VLLM_CPU_CI_ENV=0 python3 benchmarks/benchmark_serving.py \
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -pp=2 &
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
vllm bench serve \
--backend vllm \
--dataset-name random \
--model facebook/opt-125m \
--model meta-llama/Llama-3.2-3B-Instruct \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer facebook/opt-125m"
--endpoint /v1/completions'
# Run multi-lora tests
docker exec cpu-test-"$NUMA_NODE" bash -c "

View File

@ -0,0 +1,166 @@
#!/bin/bash
set -xu
remove_docker_container() {
docker rm -f tpu-test || true;
docker rm -f vllm-tpu || true;
}
trap remove_docker_container EXIT
# Remove the container that might not be cleaned up in the previous run.
remove_docker_container
# Build the docker image.
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
# Set up cleanup.
cleanup_docker() {
# Get Docker's root directory
docker_root=$(docker info -f '{{.DockerRootDir}}')
if [ -z "$docker_root" ]; then
echo "Failed to determine Docker root directory."
exit 1
fi
echo "Docker root directory: $docker_root"
# Check disk usage of the filesystem where Docker's root directory is located
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
# Define the threshold
threshold=70
if [ "$disk_usage" -gt "$threshold" ]; then
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
# Remove dangling images (those that are not tagged and not used by any container)
docker image prune -f
# Remove unused volumes / force the system prune for old images as well.
docker volume prune -f && docker system prune --force --filter "until=72h" --all
echo "Docker images and volumes cleanup completed."
else
echo "Disk usage is below $threshold%. No cleanup needed."
fi
}
cleanup_docker
# For HF_TOKEN.
source /etc/environment
docker run --privileged --net host --shm-size=16G -it \
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
vllm-tpu /bin/bash -c '
set -e # Exit immediately if a command exits with a non-zero status.
set -u # Treat unset variables as an error.
echo "--- Starting script inside Docker container ---"
# Create results directory
RESULTS_DIR=$(mktemp -d)
# If mktemp fails, set -e will cause the script to exit.
echo "Results will be stored in: $RESULTS_DIR"
# Install dependencies
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off hf-transfer
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1
export VLLM_XLA_CACHE_PATH=
echo "Using VLLM V1"
echo "--- Hardware Information ---"
# tpu-info
echo "--- Starting Tests ---"
set +e
overall_script_exit_code=0
# --- Test Definitions ---
# If a test fails, this function will print logs and will not cause the main script to exit.
run_test() {
local test_num=$1
local test_name=$2
local test_command=$3
local log_file="$RESULTS_DIR/test_${test_num}.log"
local actual_exit_code
echo "--- TEST_$test_num: Running $test_name ---"
# Execute the test command.
eval "$test_command" > >(tee -a "$log_file") 2> >(tee -a "$log_file" >&2)
actual_exit_code=$?
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" # This goes to main log
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" >> "$log_file" # Also to per-test log
if [ "$actual_exit_code" -ne 0 ]; then
echo "TEST_$test_num ($test_name) FAILED with exit code $actual_exit_code." >&2
echo "--- Log for failed TEST_$test_num ($test_name) ---" >&2
if [ -f "$log_file" ]; then
cat "$log_file" >&2
else
echo "Log file $log_file not found for TEST_$test_num ($test_name)." >&2
fi
echo "--- End of log for TEST_$test_num ($test_name) ---" >&2
return "$actual_exit_code" # Return the failure code
else
echo "TEST_$test_num ($test_name) PASSED."
return 0 # Return success
fi
}
# Helper function to call run_test and update the overall script exit code
run_and_track_test() {
local test_num_arg="$1"
local test_name_arg="$2"
local test_command_arg="$3"
# Run the test
run_test "$test_num_arg" "$test_name_arg" "$test_command_arg"
local test_specific_exit_code=$?
# If the test failed, set the overall script exit code to 1
if [ "$test_specific_exit_code" -ne 0 ]; then
# No need for extra echo here, run_test already logged the failure.
overall_script_exit_code=1
fi
}
# --- Actual Test Execution ---
run_and_track_test 1 "test_struct_output_generate.py" \
"HF_HUB_DISABLE_XET=1 python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
run_and_track_test 2 "test_moe_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
run_and_track_test 3 "test_lora.py" \
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
run_and_track_test 4 "test_tpu_qkv_linear.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
run_and_track_test 5 "test_spmd_model_weight_loading.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
run_and_track_test 6 "test_kv_cache_update_kernel.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_kv_cache_update_kernel.py"
# After all tests have been attempted, exit with the overall status.
if [ "$overall_script_exit_code" -ne 0 ]; then
echo "--- One or more tests FAILED. Overall script exiting with failure code 1. ---"
else
echo "--- All tests have completed and PASSED. Overall script exiting with success code 0. ---"
fi
exit "$overall_script_exit_code"
' # IMPORTANT: This is the closing single quote for the bash -c "..." command. Ensure it is present and correct.
# Capture the exit code of the docker run command
DOCKER_RUN_EXIT_CODE=$?
# The trap will run for cleanup.
# Exit the main script with the Docker run command's exit code.
if [ "$DOCKER_RUN_EXIT_CODE" -ne 0 ]; then
echo "Docker run command failed with exit code $DOCKER_RUN_EXIT_CODE."
exit "$DOCKER_RUN_EXIT_CODE"
else
echo "Docker run command completed successfully."
exit 0
fi
# TODO: This test fails because it uses RANDOM_SEED sampling
# pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \

View File

@ -62,7 +62,8 @@ echo "Results will be stored in: $RESULTS_DIR"
echo "--- Installing Python dependencies ---"
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
&& python3 -m pip install --progress-bar off hf-transfer
echo "--- Python dependencies installed ---"
export VLLM_USE_V1=1
export VLLM_XLA_CHECK_RECOMPILATION=1
@ -70,7 +71,7 @@ export VLLM_XLA_CACHE_PATH=
echo "Using VLLM V1"
echo "--- Hardware Information ---"
tpu-info
# tpu-info
echo "--- Starting Tests ---"
set +e
overall_script_exit_code=0
@ -134,7 +135,7 @@ run_and_track_test 1 "test_compilation.py" \
run_and_track_test 2 "test_basic.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py"
run_and_track_test 3 "test_accuracy.py::test_lm_eval_accuracy_v1_engine" \
"python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine"
"HF_HUB_DISABLE_XET=1 python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine"
run_and_track_test 4 "test_quantization_accuracy.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py"
run_and_track_test 5 "examples/offline_inference/tpu.py" \
@ -149,18 +150,6 @@ run_and_track_test 9 "test_multimodal.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py"
run_and_track_test 10 "test_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
run_and_track_test 11 "test_struct_output_generate.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
run_and_track_test 12 "test_moe_pallas.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
run_and_track_test 13 "test_lora.py" \
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
run_and_track_test 14 "test_tpu_qkv_linear.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
run_and_track_test 15 "test_spmd_model_weight_loading.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
run_and_track_test 16 "test_kv_cache_update_kernel.py" \
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_kv_cache_update_kernel.py"
# After all tests have been attempted, exit with the overall status.
if [ "$overall_script_exit_code" -ne 0 ]; then

View File

@ -31,4 +31,13 @@ docker run \
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
cd tests
pytest -v -s v1/core
pytest -v -s v1/engine
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
pytest -v -s v1/structured_output
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py
pytest -v -s v1/test_serial_utils.py
pytest -v -s v1/test_utils.py
pytest -v -s v1/test_metrics_reader.py
'

View File

@ -11,10 +11,10 @@ cd "$(dirname "${BASH_SOURCE[0]}")/../.."
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# run python-based benchmarks and upload the result to buildkite
python3 benchmarks/benchmark_latency.py --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
vllm bench latency --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
bench_latency_exit_code=$?
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
@ -24,7 +24,7 @@ wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/r
# wait for server to start, timeout after 600 seconds
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
vllm bench serve \
--backend vllm \
--dataset-name sharegpt \
--dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json \

View File

@ -77,7 +77,7 @@ done
echo "run benchmark test..."
echo "logging to $BM_LOG"
echo
python benchmarks/benchmark_serving.py \
vllm bench serve \
--backend vllm \
--model $MODEL \
--dataset-name sonnet \

View File

@ -159,13 +159,14 @@ steps:
- tests/distributed/test_utils
- tests/distributed/test_pynccl
- tests/distributed/test_events
- tests/spec_decode/e2e/test_integration_dist_tp4
- tests/compile/test_basic_correctness
- examples/offline_inference/rlhf.py
- examples/offline_inference/rlhf_colocate.py
- tests/examples/offline_inference/data_parallel.py
- tests/v1/test_async_llm_dp.py
- tests/v1/test_external_lb_dp.py
- tests/v1/test_internal_lb_dp.py
- tests/v1/test_hybrid_lb_dp.py
- tests/v1/engine/test_engine_core_client.py
commands:
# test with tp=2 and external_dp=2
@ -177,12 +178,13 @@ steps:
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
- pytest -v -s distributed/test_utils.py
- pytest -v -s compile/test_basic_correctness.py
- pytest -v -s distributed/test_pynccl.py
- pytest -v -s distributed/test_events.py
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
# TODO: create a dedicated test section for multi-GPU example tests
# when we have multiple distributed example tests
- pushd ../examples/offline_inference
@ -227,7 +229,7 @@ steps:
##### 1 GPU test #####
- label: Regression Test # 5min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/test_regression
@ -266,6 +268,7 @@ steps:
- pytest -v -s v1/structured_output
- pytest -v -s v1/spec_decode
- pytest -v -s v1/kv_connector/unit
- pytest -v -s v1/metrics
- pytest -v -s v1/test_serial_utils.py
- pytest -v -s v1/test_utils.py
- pytest -v -s v1/test_oracle.py
@ -274,11 +277,11 @@ steps:
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
- pytest -v -s v1/e2e
# Integration test for streaming correctness (requires special branch).
- pip install -U git+https://github.com/robertgshaw2-neuralmagic/lm-evaluation-harness.git@streaming-api
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
- label: Examples Test # 25min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
working_dir: "/vllm-workspace/examples"
source_file_dependencies:
- vllm/entrypoints
@ -312,7 +315,7 @@ steps:
- label: Platform Tests (CUDA)
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/cuda
@ -330,19 +333,8 @@ steps:
- pytest -v -s samplers
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
- label: Speculative decoding tests # 40min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/spec_decode
- tests/spec_decode
- vllm/model_executor/models/eagle.py
commands:
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py --ignore=spec_decode/e2e/test_mtp_correctness.py
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
- label: LoRA Test %N # 15min each
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/lora
- tests/lora
@ -394,7 +386,7 @@ steps:
- pytest -v -s kernels/core
- label: Kernels Attention Test %N
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/attention/
- vllm/attention
@ -405,7 +397,7 @@ steps:
parallelism: 2
- label: Kernels Quantization Test %N
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- csrc/quantization/
- vllm/model_executor/layers/quantization
@ -424,7 +416,7 @@ steps:
- pytest -v -s kernels/moe
- label: Kernels Mamba Test
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- csrc/mamba/
- tests/kernels/mamba
@ -432,7 +424,7 @@ steps:
- pytest -v -s kernels/mamba
- label: Tensorizer Test # 11min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
soft_fail: true
source_file_dependencies:
- vllm/model_executor/model_loader
@ -446,7 +438,6 @@ steps:
- label: Model Executor Test
mirror_hardwares: [amdexperimental, amdproduction]
soft_fail: true
source_file_dependencies:
- vllm/model_executor
- tests/model_executor
@ -503,7 +494,7 @@ steps:
- pytest -s entrypoints/openai/correctness/
- label: Encoder Decoder tests # 5min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
source_file_dependencies:
- vllm/
- tests/encoder_decoder
@ -511,7 +502,7 @@ steps:
- pytest -v -s encoder_decoder
- label: OpenAI-Compatible Tool Use # 20 min
mirror_hardwares: [amdexperimental]
mirror_hardwares: [amdexperimental, amdproduction]
fast_check: false
source_file_dependencies:
- vllm/
@ -623,7 +614,7 @@ steps:
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
- label: Quantized Models Test
mirror_hardwares: [amdexperimental, amdproduction]
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/model_executor/layers/quantization
- tests/models/quantization
@ -726,10 +717,10 @@ steps:
- pytest -v -s distributed/test_sequence_parallel.py
# this test fails consistently.
# TODO: investigate and fix
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
- pytest -v -s models/multimodal/generation/test_maverick.py
- label: Plugin Tests (2 GPUs) # 40min
mirror_hardwares: [amdexperimental]

15
.github/CODEOWNERS vendored
View File

@ -16,7 +16,7 @@
/vllm/lora @jeejeelee
/vllm/reasoning @aarnphm
/vllm/entrypoints @aarnphm
/vllm/compilation @zou3519 @youkaichao
/vllm/compilation @zou3519 @youkaichao @ProExpertProg
CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Any change to the VllmConfig changes can have a large user-facing impact,
@ -43,7 +43,6 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
/tests/multimodal @DarkLight1337 @ywang96
/tests/prefix_caching @comaniac @KuntaiDu
/tests/quantization @mgoin @robertgshaw2-redhat
/tests/spec_decode @njhill @LiuXiaoxuanPKU
/tests/test_inputs.py @DarkLight1337 @ywang96
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
/tests/v1/structured_output @mgoin @russellb @aarnphm
@ -53,3 +52,15 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Docs
/docs @hmellor
mkdocs.yaml @hmellor
# CPU
/vllm/v1/worker/^cpu @bigPYJ1151
/csrc/cpu @bigPYJ1151
/vllm/platforms/cpu.py @bigPYJ1151
/cmake/cpu_extension.cmake @bigPYJ1151
/docker/Dockerfile.cpu @bigPYJ1151
# Intel GPU
/vllm/v1/worker/^xpu @jikunshang
/vllm/platforms/xpu.py @jikunshang
/docker/Dockerfile.xpu @jikunshang

View File

@ -46,7 +46,7 @@ body:
- type: markdown
attributes:
value: >
Thanks for contributing 🎉!
Thanks for contributing 🎉! The vLLM core team hosts a biweekly RFC review session at 9:30AM Pacific Time, while most RFCs can be discussed online, you can optionally sign up for a slot to discuss your RFC online [here](https://docs.google.com/document/d/1CiLVBZeIVfR7_PNAKVSusxpceywkoOOB78qoWqHvSZc/edit).
- type: checkboxes
id: askllm
attributes:

3
.github/mergify.yml vendored
View File

@ -164,10 +164,7 @@ pull_request_rules:
description: Automatically apply speculative-decoding label
conditions:
- or:
- files~=^vllm/spec_decode/
- files~=^vllm/v1/spec_decode/
- files=vllm/model_executor/layers/spec_decode_base_sampler.py
- files~=^tests/spec_decode/
- files~=^tests/v1/spec_decode/
- files~=^examples/.*(spec_decode|mlpspeculator|eagle|speculation).*\.py
- files~=^vllm/model_executor/models/.*eagle.*\.py

View File

@ -7,7 +7,7 @@ permissions:
jobs:
lint-and-deploy:
runs-on: ubuntu-latest
runs-on: ubuntu-24.04-arm
steps:
- name: Checkout
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2

View File

@ -45,7 +45,7 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from docker/Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.0")
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.1")
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
#
@ -296,7 +296,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
"csrc/cutlass_extensions/common.cpp"
"csrc/attention/mla/cutlass_mla_entry.cu")
"csrc/attention/mla/cutlass_mla_entry.cu"
"csrc/quantization/fp8/per_token_group_quant.cu")
set_gencode_flags_for_srcs(
SRCS "${VLLM_EXT_SRC}"
@ -577,7 +578,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
# if it's possible to compile MoE kernels that use its output.
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu")
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm90.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
@ -595,6 +596,26 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
set_gencode_flags_for_srcs(
SRCS "${SRCS}"
CUDA_ARCHS "${SCALED_MM_ARCHS}")
list(APPEND VLLM_EXT_SRC "${SRCS}")
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
message(STATUS "Building grouped_mm_c3x for archs: ${SCALED_MM_ARCHS}")
else()
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
message(STATUS "Not building grouped_mm_c3x kernels as CUDA Compiler version is "
"not >= 12.8, we recommend upgrading to CUDA 12.8 or later "
"if you intend on running FP8 quantized MoE models on Blackwell.")
else()
message(STATUS "Not building grouped_mm_c3x as no compatible archs found "
"in CUDA target architectures.")
endif()
endif()
# moe_data.cu is used by all CUTLASS MoE kernels.
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
@ -614,7 +635,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
"in CUDA target architectures.")
endif()
endif()
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
@ -747,6 +768,14 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_PERMUTE_SRC
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
"csrc/moe/moe_permute_unpermute_op.cu")
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
endif()
set_gencode_flags_for_srcs(
SRCS "${VLLM_MOE_EXT_SRC}"
CUDA_ARCHS "${CUDA_ARCHS}")
@ -815,17 +844,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
endif()
endif()
if(VLLM_GPU_LANG STREQUAL "CUDA")
set(MOE_PERMUTE_SRC
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
"csrc/moe/moe_permute_unpermute_op.cu")
set_gencode_flags_for_srcs(
SRCS "${MARLIN_PERMUTE_SRC}"
CUDA_ARCHS "${MOE_PERMUTE_ARCHS}")
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
endif()
message(STATUS "Enabling moe extension.")
define_gpu_extension_target(
_moe_C

View File

@ -52,3 +52,36 @@ After branch cut, we approach finalizing the release branch with clear criteria
* Release branch specific changes (e.g. change version identifiers or CI fixes)
Please note: **No feature work allowed for cherry picks**. All PRs that are considered for cherry-picks need to be merged on trunk, the only exception are Release branch specific changes.
## Manual validations
### E2E Performance Validation
Before each release, we perform end-to-end performance validation to ensure no regressions are introduced. This validation uses the [vllm-benchmark workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) on PyTorch CI.
**Current Coverage:**
* Models: Llama3, Llama4, and Mixtral
* Hardware: NVIDIA H100 and AMD MI300x
* *Note: Coverage may change based on new model releases and hardware availability*
**Performance Validation Process:**
**Step 1: Get Access**
Request write access to the [pytorch/pytorch-integration-testing](https://github.com/pytorch/pytorch-integration-testing) repository to run the benchmark workflow.
**Step 2: Review Benchmark Setup**
Familiarize yourself with the benchmark configurations:
* [CUDA setup](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks/cuda)
* [ROCm setup](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks/rocm)
**Step 3: Run the Benchmark**
Navigate to the [vllm-benchmark workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) and configure:
* **vLLM branch**: Set to the release branch (e.g., `releases/v0.9.2`)
* **vLLM commit**: Set to the RC commit hash
**Step 4: Review Results**
Once the workflow completes, benchmark results will be available on the [vLLM benchmark dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm) under the corresponding branch and commit.
**Step 5: Performance Comparison**
Compare the current results against the previous release to verify no performance regressions have occurred. Here is an
example of [v0.9.1 vs v0.9.2](https://hud.pytorch.org/benchmark/llms?startTime=Thu%2C%2017%20Apr%202025%2021%3A43%3A50%20GMT&stopTime=Wed%2C%2016%20Jul%202025%2021%3A43%3A50%20GMT&granularity=week&lBranch=releases/v0.9.1&lCommit=b6553be1bc75f046b00046a4ad7576364d03c835&rBranch=releases/v0.9.2&rCommit=a5dd03c1ebc5e4f56f3c9d3dc0436e9c582c978f&repoName=vllm-project%2Fvllm&benchmarkName=&modelName=All%20Models&backendName=All%20Backends&modeName=All%20Modes&dtypeName=All%20DType&deviceName=All%20Devices&archName=All%20Platforms).

View File

@ -98,7 +98,7 @@ Then run the benchmarking script
```bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 vllm/benchmarks/benchmark_serving.py \
vllm bench serve \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
@ -111,25 +111,25 @@ If successful, you will see the following output
```
============ Serving Benchmark Result ============
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
Successful requests: 10
Benchmark duration (s): 5.78
Total input tokens: 1369
Total generated tokens: 2212
Request throughput (req/s): 1.73
Output token throughput (tok/s): 382.89
Total Token throughput (tok/s): 619.85
---------------Time to First Token----------------
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
Mean TTFT (ms): 71.54
Median TTFT (ms): 73.88
P99 TTFT (ms): 79.49
-----Time per Output Token (excl. 1st token)------
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
Mean TPOT (ms): 7.91
Median TPOT (ms): 7.96
P99 TPOT (ms): 8.03
---------------Inter-token Latency----------------
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
Mean ITL (ms): 7.74
Median ITL (ms): 7.70
P99 ITL (ms): 8.39
==================================================
```
@ -141,7 +141,7 @@ If the dataset you want to benchmark is not supported yet in vLLM, even then you
{"prompt": "What is the capital of India?"}
{"prompt": "What is the capital of Iran?"}
{"prompt": "What is the capital of China?"}
```
```
```bash
# start server
@ -150,7 +150,7 @@ VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct --disable-log-requests
```bash
# run benchmarking script
python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detailed \
vllm bench serve --port 9001 --save-result --save-detailed \
--backend vllm \
--model meta-llama/Llama-3.1-8B-Instruct \
--endpoint /v1/completions \
@ -174,7 +174,7 @@ vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
```
```bash
python3 vllm/benchmarks/benchmark_serving.py \
vllm bench serve \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
@ -194,7 +194,7 @@ VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
```
``` bash
python3 benchmarks/benchmark_serving.py \
vllm bench serve \
--model meta-llama/Meta-Llama-3-8B-Instruct \
--dataset-name hf \
--dataset-path likaixin/InstructCoder \
@ -210,7 +210,7 @@ vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
python3 vllm/benchmarks/benchmark_serving.py \
vllm bench serve \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
@ -224,7 +224,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
python3 vllm/benchmarks/benchmark_serving.py \
vllm bench serve \
--backend openai-chat \
--model Qwen/Qwen2-VL-7B-Instruct \
--endpoint /v1/chat/completions \
@ -237,7 +237,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
**`AI-MO/aimo-validation-aime`**
``` bash
python3 vllm/benchmarks/benchmark_serving.py \
vllm bench serve \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path AI-MO/aimo-validation-aime \
@ -248,7 +248,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
**`philschmid/mt-bench`**
``` bash
python3 vllm/benchmarks/benchmark_serving.py \
vllm bench serve \
--model Qwen/QwQ-32B \
--dataset-name hf \
--dataset-path philschmid/mt-bench \
@ -261,7 +261,7 @@ When using OpenAI-compatible backends such as `vllm`, optional sampling
parameters can be specified. Example client command:
```bash
python3 vllm/benchmarks/benchmark_serving.py \
vllm bench serve \
--backend vllm \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--endpoint /v1/completions \
@ -296,7 +296,7 @@ The following arguments can be used to control the ramp-up:
<br/>
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
vllm bench throughput \
--model NousResearch/Hermes-3-Llama-3.1-8B \
--dataset-name sonnet \
--dataset-path vllm/benchmarks/sonnet.txt \
@ -314,7 +314,7 @@ Total num output tokens: 1500
**VisionArena Benchmark for Vision Language Models**
``` bash
python3 vllm/benchmarks/benchmark_throughput.py \
vllm bench throughput \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
@ -336,7 +336,7 @@ Total num output tokens: 1280
``` bash
VLLM_WORKER_MULTIPROC_METHOD=spawn \
VLLM_USE_V1=1 \
python3 vllm/benchmarks/benchmark_throughput.py \
vllm bench throughput \
--dataset-name=hf \
--dataset-path=likaixin/InstructCoder \
--model=meta-llama/Meta-Llama-3-8B-Instruct \
@ -360,7 +360,7 @@ Total num output tokens: 204800
**`lmms-lab/LLaVA-OneVision-Data`**
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
vllm bench throughput \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
@ -373,7 +373,7 @@ python3 vllm/benchmarks/benchmark_throughput.py \
**`Aeala/ShareGPT_Vicuna_unfiltered`**
```bash
python3 vllm/benchmarks/benchmark_throughput.py \
vllm bench throughput \
--model Qwen/Qwen2-VL-7B-Instruct \
--backend vllm-chat \
--dataset-name hf \
@ -385,7 +385,7 @@ python3 vllm/benchmarks/benchmark_throughput.py \
**`AI-MO/aimo-validation-aime`**
```bash
python3 benchmarks/benchmark_throughput.py \
vllm bench throughput \
--model Qwen/QwQ-32B \
--backend vllm \
--dataset-name hf \
@ -399,7 +399,7 @@ python3 benchmarks/benchmark_throughput.py \
``` bash
# download dataset
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
python3 vllm/benchmarks/benchmark_throughput.py \
vllm bench throughput \
--model meta-llama/Llama-2-7b-hf \
--backend vllm \
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \

View File

@ -0,0 +1,141 @@
# Automated vLLM Server Parameter Tuning
This script automates the process of finding the optimal server parameter combination (`max-num-seqs` and `max-num-batched-tokens`) to maximize throughput for a vLLM server. It also supports additional constraints such as E2E latency and prefix cache hit rate.
## Table of Contents
- [Prerequisites](#prerequisites)
- [Configuration](#configuration)
- [How to Run](#how-to-run)
- [Example Use Cases](#example-use-cases)
- [Output](#output)
- [How It Works](#how-it-works)
## Prerequisites
Before running the script, please ensure the following steps are completed:
1. **Clone vLLM & Set Up Branch**: Clone the vLLM repository and check out to your desired branch.
```bash
git clone https://github.com/vllm-project/vllm.git
cd vllm
# git checkout <your-branch>
```
1. **Install Environment**: Install or update the correct running environment. For TPU usage, activate your `conda` environment and install the corresponding `torch` and `torch_xla` versions.
2. **Model Configuration**: If you are using a customized model, ensure its configuration files are correctly placed and accessible.
## Configuration
You must set the following variables at the top of the script before execution.
| Variable | Description | Example Value |
| --- | --- | --- |
| `BASE` | **Required.** The absolute path to the parent directory of your vLLM repository directory. | `"$HOME"` |
| `MODEL` | **Required.** The Hugging Face model identifier to be served by vllm. | `"meta-llama/Llama-3.1-8B-Instruct"` |
| `SYSTEM`| **Required.** The hardware you are running on. Choices: `TPU` or `GPU`. (For other systems, it might not support saving profiles) | `"TPU"` |
| `TP` | **Required.** The tensor-parallelism size. | `1` |
| `DOWNLOAD_DIR` | **Required.** Directory to download and load model weights from. | `""` (default download path) |
| `INPUT_LEN` | **Required.** Request input length. | `4000` |
| `OUTPUT_LEN` | **Required.** Request output length. | `16` |
| `MAX_MODEL_LEN` | **Required.** Max model length. | `4096` |
| `MIN_CACHE_HIT_PCT` | Prefix cache hit rate in percentage (0-100). Set to `0` to disable. | `60` |
| `MAX_LATENCY_ALLOWED_MS` | The maximum allowed P99 end-to-end latency in milliseconds. Set to a very large number (e.g., `100000000000`) to effectively ignore the latency constraint. | `500` |
| `NUM_SEQS_LIST` | A space-separated string of `max-num-seqs` values to test. | `"128 256"` |
| `NUM_BATCHED_TOKENS_LIST` | A space-separated string of `max-num-batched-tokens` values to test. | `"1024 2048 4096"` |
**Note**: The default `NUM_SEQS_LIST` and `NUM_BATCHED_TOKENS_LIST` are set for medium-sized inputs/outputs. For very short contexts (e.g., 20 input, 20 output tokens), you may need to test larger values for `max-num-seqs`.
## How to Run
1. **Configure**: Edit the script and set the variables in the [Configuration](#configuration) section.
2. **Execute**: Run the script. Since the process can take a long time, it is highly recommended to use a terminal multiplexer like `tmux` or `screen` to prevent the script from stopping if your connection is lost.
```
cd <FOLDER_OF_THIS_SCRIPT>
bash auto_tune.sh
```
Please note that the `bash auto_tune.sh` command cannot contain full or partial path with keyword `vllm`, otherwise `pkill -f vllm` command will also kill this script itself.
## Example Use Cases
Here are a few examples of how to configure the script for different goals:
### 1. Maximize Throughput (No Latency Constraint)
- **Goal**: Find the best `max-num-seqs` and `max-num-batched-tokens` to get the highest possible throughput for 1800 input tokens and 20 output tokens.
- **Configuration**:
```bash
INPUT_LEN=1800
OUTPUT_LEN=20
MAX_MODEL_LEN=2048
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000 # A very large number
```
#### 2. Maximize Throughput with a Latency Requirement
- **Goal**: Find the best server parameters when P99 end-to-end latency must be below 500ms.
- **Configuration**:
```bash
INPUT_LEN=1800
OUTPUT_LEN=20
MAX_MODEL_LEN=2048
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=500
```
#### 3. Maximize Throughput with Prefix Caching and Latency Requirements
- **Goal**: Find the best server parameters assuming a 60% prefix cache hit rate and a latency requirement of 500ms.
- **Configuration**:
```bash
INPUT_LEN=1800
OUTPUT_LEN=20
MAX_MODEL_LEN=2048
MIN_CACHE_HIT_PCT=60
MAX_LATENCY_ALLOWED_MS=500
```
## Output
After the script finishes, you will find the results in a new, timestamped directory created inside `$BASE/auto-benchmark/`.
- **Log Files**: The directory (`$BASE/auto-benchmark/YYYY_MM_DD_HH_MM/`) contains detailed logs for each run:
- `vllm_log_...txt`: The log output from the vLLM server for each parameter combination.
- `bm_log_...txt`: The log output from the `vllm bench serve` command for each benchmark run.
- **Final Result Summary**: A file named `result.txt` is created in the log directory. It contains a summary of each tested combination and concludes with the overall best parameters found.
```
# Example result.txt content
hash:a1b2c3d4...
max_num_seqs: 128, max_num_batched_tokens: 2048, request_rate: 10.0, e2el: 450.5, throughput: 9.8, goodput: 9.8
max_num_seqs: 128, max_num_batched_tokens: 4096 does not meet latency requirement 500
...
best_max_num_seqs: 256, best_num_batched_tokens: 2048, best_throughput: 12.5, profile saved in: /home/user/vllm/auto-benchmark/2024_08_01_10_30/profile
```
If it cannot find the best parameters, the final row will be `best_max_num_seqs: 0, best_num_batched_tokens: 0, best_throughput: 0`. This can be due to either the server not starting properly, or the latency requirement being too strict.
- **Profiler Trace**: A directory named `profile` is created inside the log directory. It contains the profiler trace file (e.g., `.xplane.pb` for TPU or a `.json` trace for GPU) from the single best-performing run.
## How It Works
The script follows a systematic process to find the optimal parameters:
1. **Find Max GPU Memory Utilization**: The script first determines the highest safe `gpu-memory-utilization` (starting from 0.98 and decreasing) that does not cause an Out-Of-Memory (OOM) error when launching the server. This ensures the benchmark runs use the maximum available memory without crashing.
2. **Iterate and Benchmark**: It then enters a nested loop, iterating through every combination of `max-num-seqs` and `max-num-batched-tokens` provided in the configuration lists.
3. **Latency-Aware Throughput Search**: For each parameter combination:
- The vLLM server is started.
- A benchmark is first run with an infinite request rate (`--request-rate inf`).
- If the resulting P99 E2E latency is within the `MAX_LATENCY_ALLOWED_MS` limit, this throughput is considered the maximum for this configuration.
- If the latency is too high, the script performs a search by iteratively decreasing the request rate until the latency constraint is met. This finds the highest sustainable throughput for the given parameters and latency requirement.
4. **Track Best Result**: Throughout the process, the script tracks the parameter combination that has yielded the highest valid throughput so far.
5. **Profile Collection**: For the best-performing run, the script saves the vLLM profiler output, which can be used for deep-dive performance analysis with tools like TensorBoard.

View File

@ -1,45 +1,18 @@
#!/bin/bash
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# The current server parameter combination is max_num_seqs and max_num_batched_tokens
# It also supports additional requirement: e2e latency and prefix cache.
# Pre-requisite:
# 1. Checkout to your branch, install/ update the correct running env. For TPU, activate conda env and install the corresponding torch, xla version.
# 2. If the model is customized, replace the MODEL's config with the customized config.
# 3. Set variables (ALL REQUIRED)
# BASE: your directory for vllm repo
# MODEL: the model served by vllm
# SYSTEM: the hardware, choice TPU or GPU, for other systems, "get best profile" might not support.
# TP: ways of tensor parallelism
# DOWNLOAD_DIR: directory to download and load model weights.
# INPUT_LEN: request input len
# OUTPUT_LEN: request output len
# MIN_CACHE_HIT_PCT: prefix cache rate
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
# NUM_SEQS_LIST: a list of `max-num-seqs` you want to loop with.
# NUM_BATCHED_TOKENS_LIST: a list of `max-num-batched-tokens` you want to loop with.
# Note that the default NUM_SEQS_LIST and NUM_BATCHED_TOKENS_LIST are set for medium size input/output len, for extra short context (such as 20:20), you might need to include larger numbers in NUM_SEQS_LIST.
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
# 5. The final result will be saved in RESULT file.
# Example use cases
# 1. Given input_len=1800, output_len=20, what's the best max_num_seqs and max_num_batched_tokens to get highest throughput?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=100000000000
# 2. If we have latency requirement to be lower than 500ms, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=500
# 3. If we want to reach 60% prefix cache, what's the best server parameter?
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=60, MAX_LATENCY_ALLOWED_MS=500
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
# See details in README (benchmarks/auto_tune/README.md).
TAG=$(date +"%Y_%m_%d_%H_%M")
BASE=""
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
BASE="$SCRIPT_DIR/../../.."
MODEL="meta-llama/Llama-3.1-8B-Instruct"
SYSTEM="TPU"
TP=1
DOWNLOAD_DIR=""
INPUT_LEN=4000
OUTPUT_LEN=16
MAX_MODEL_LEN=4096
MIN_CACHE_HIT_PCT=0
MAX_LATENCY_ALLOWED_MS=100000000000
NUM_SEQS_LIST="128 256"
@ -65,6 +38,13 @@ current_hash=$(git rev-parse HEAD)
echo "hash:$current_hash" >> "$RESULT"
echo "current_hash: $current_hash"
TOTAL_LEN=$((INPUT_LEN + OUTPUT_LEN))
RED='\033[0;31m'
if (( TOTAL_LEN > MAX_MODEL_LEN )); then
echo -e "${RED}FAILED: INPUT_LEN($INPUT_LEN) + OUTPUT_LEN($OUTPUT_LEN) = $TOTAL_LEN, which is > MAX_MODEL_LEN = $MAX_MODEL_LEN.\033[0m" >&2
exit 1
fi
best_throughput=0
best_max_num_seqs=0
best_num_batched_tokens=0
@ -76,7 +56,7 @@ start_server() {
local max_num_batched_tokens=$3
local vllm_log=$4
local profile_dir=$5
pkill -f vllm
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir vllm serve $MODEL \
@ -89,13 +69,13 @@ start_server() {
--enable-prefix-caching \
--load-format dummy \
--download-dir "$DOWNLOAD_DIR" \
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
--max-model-len $MAX_MODEL_LEN > "$vllm_log" 2>&1 &
# wait for 10 minutes...
server_started=0
for i in {1..60}; do
for i in {1..60}; do
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
if [[ "$STATUS_CODE" -eq 200 ]]; then
server_started=1
break
@ -118,10 +98,10 @@ update_best_profile() {
selected_profile_file=
if [[ "$SYSTEM" == "TPU" ]]; then
selected_profile_file="${sorted_paths[$profile_index]}/*.xplane.pb"
fi
fi
if [[ "$SYSTEM" == "GPU" ]]; then
selected_profile_file="${sorted_paths[$profile_index]}"
fi
fi
rm -f $PROFILE_PATH/*
cp $selected_profile_file $PROFILE_PATH
}
@ -149,17 +129,18 @@ run_benchmark() {
echo "server started."
fi
echo
echo "run benchmark test..."
meet_latency_requirement=0
# get a basic qps by using request-rate inf
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
python benchmarks/benchmark_serving.py \
adjusted_input_len=$(( INPUT_LEN - prefix_len ))
vllm bench serve \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $INPUT_LEN \
--random-input-len $adjusted_input_len \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
@ -188,11 +169,11 @@ run_benchmark() {
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
sleep 5
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
python benchmarks/benchmark_serving.py \
vllm bench serve \
--backend vllm \
--model $MODEL \
--dataset-name random \
--random-input-len $INPUT_LEN \
--random-input-len $adjusted_input_len \
--random-output-len $OUTPUT_LEN \
--ignore-eos \
--disable-tqdm \
@ -273,4 +254,3 @@ done
echo "finish permutations"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"

View File

@ -11,6 +11,7 @@ from typing import Any, Optional
import numpy as np
from tqdm import tqdm
from typing_extensions import deprecated
import vllm.envs as envs
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
@ -34,6 +35,10 @@ def save_to_pytorch_benchmark_format(
write_to_json(pt_file, pt_records)
@deprecated(
"benchmark_latency.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench latency' instead.",
)
def main(args: argparse.Namespace):
print(args)

View File

@ -30,7 +30,7 @@ import os
import random
import time
import warnings
from collections.abc import AsyncGenerator, Iterable
from collections.abc import Iterable
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal, Optional
@ -38,6 +38,7 @@ from typing import Any, Literal, Optional
import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from typing_extensions import deprecated
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
@ -73,6 +74,7 @@ from benchmark_dataset import (
VisionArenaDataset,
)
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
from vllm.benchmarks.serve import get_request
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
@ -107,101 +109,6 @@ class BenchmarkMetrics:
percentiles_e2el_ms: list[tuple[float, float]]
def _get_current_request_rate(
ramp_up_strategy: Optional[Literal["linear", "exponential"]],
ramp_up_start_rps: Optional[int],
ramp_up_end_rps: Optional[int],
request_index: int,
total_requests: int,
request_rate: float,
) -> float:
if (
ramp_up_strategy
and ramp_up_start_rps is not None
and ramp_up_end_rps is not None
):
progress = request_index / max(total_requests - 1, 1)
if ramp_up_strategy == "linear":
increase = (ramp_up_end_rps - ramp_up_start_rps) * progress
return ramp_up_start_rps + increase
elif ramp_up_strategy == "exponential":
ratio = ramp_up_end_rps / ramp_up_start_rps
return ramp_up_start_rps * (ratio**progress)
else:
raise ValueError(f"Unknown ramp-up strategy: {ramp_up_strategy}")
return request_rate
async def get_request(
input_requests: list[SampleRequest],
request_rate: float,
burstiness: float = 1.0,
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
ramp_up_start_rps: Optional[int] = None,
ramp_up_end_rps: Optional[int] = None,
) -> AsyncGenerator[tuple[SampleRequest, float], None]:
"""
Asynchronously generates requests at a specified rate
with OPTIONAL burstiness and OPTIONAL ramp-up strategy.
Args:
input_requests:
A list of input requests, each represented as a SampleRequest.
request_rate:
The rate at which requests are generated (requests/s).
burstiness (optional):
The burstiness factor of the request generation.
Only takes effect when request_rate is not inf.
Default value is 1, which follows a Poisson process.
Otherwise, the request intervals follow a gamma distribution.
A lower burstiness value (0 < burstiness < 1) results
in more bursty requests, while a higher burstiness value
(burstiness > 1) results in a more uniform arrival of requests.
ramp_up_strategy (optional):
The ramp-up strategy. Can be "linear" or "exponential".
If None, uses constant request rate (specified by request_rate).
ramp_up_start_rps (optional):
The starting request rate for ramp-up.
ramp_up_end_rps (optional):
The ending request rate for ramp-up.
"""
assert burstiness > 0, (
f"A positive burstiness factor is expected, but given {burstiness}."
)
# Convert to list to get length for ramp-up calculations
if isinstance(input_requests, Iterable) and not isinstance(input_requests, list):
input_requests = list(input_requests)
total_requests = len(input_requests)
request_index = 0
for request in input_requests:
current_request_rate = _get_current_request_rate(
ramp_up_strategy,
ramp_up_start_rps,
ramp_up_end_rps,
request_index,
total_requests,
request_rate,
)
yield request, current_request_rate
request_index += 1
if current_request_rate == float("inf"):
# If the request rate is infinity, then we don't need to wait.
continue
theta = 1.0 / (current_request_rate * burstiness)
# Sample the request interval from the gamma distribution.
# If burstiness is 1, it follows exponential distribution.
interval = np.random.gamma(shape=burstiness, scale=theta)
# The next request will be sent after the interval.
await asyncio.sleep(interval)
def calculate_metrics(
input_requests: list[SampleRequest],
outputs: list[RequestFuncOutput],
@ -687,6 +594,10 @@ def save_to_pytorch_benchmark_format(
write_to_json(pt_file, pt_records)
@deprecated(
"benchmark_serving.py is deprecated and will be removed in a future "
"version. Please use 'vllm bench serve' instead.",
)
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)

View File

@ -15,6 +15,7 @@ import torch
import uvloop
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
from typing_extensions import deprecated
from benchmark_dataset import (
AIMODataset,
@ -167,7 +168,8 @@ async def run_vllm_async(
from vllm import SamplingParams
async with build_async_engine_client_from_engine_args(
engine_args, disable_frontend_multiprocessing
engine_args,
disable_frontend_multiprocessing=disable_frontend_multiprocessing,
) as llm:
model_config = await llm.get_model_config()
assert all(
@ -381,6 +383,10 @@ def get_requests(args, tokenizer):
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
@deprecated(
"benchmark_throughput.py is deprecated and will be removed in a "
"future version. Please use 'vllm bench throughput' instead.",
)
def main(args: argparse.Namespace):
if args.seed is None:
args.seed = 0

View File

@ -3,7 +3,7 @@
# benchmark the overhead of disaggregated prefill.
# methodology:
# - send all request to prefill vLLM instance. It will buffer KV cache.
# - then send all request to decode instance.
# - then send all request to decode instance.
# - The TTFT of decode instance is the overhead.
set -ex
@ -12,6 +12,8 @@ kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pgrep VLLM | xargs -r kill -9
sleep 10
# remove vllm config file
@ -61,7 +63,7 @@ benchmark() {
--gpu-memory-utilization 0.6 \
--kv-transfer-config \
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
CUDA_VISIBLE_DEVICES=1 python3 \
-m vllm.entrypoints.openai.api_server \
@ -76,38 +78,38 @@ benchmark() {
wait_for_server 8200
# let the prefill instance finish prefill
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8100 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1.json \
--request-rate "inf"
vllm bench serve \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8100 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1.json \
--request-rate "inf"
# send the request to decode.
# The TTFT of this command will be the overhead of disagg prefill impl.
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8200 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1_overhead.json \
--request-rate "$qps"
vllm bench serve \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8200 \
--save-result \
--result-dir $results_folder \
--result-filename disagg_prefill_tp1_overhead.json \
--request-rate "$qps"
kill_gpu_processes
}

View File

@ -18,6 +18,8 @@ kill_gpu_processes() {
# kill all processes on GPU.
pgrep pt_main_thread | xargs -r kill -9
pgrep python3 | xargs -r kill -9
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
pgrep VLLM | xargs -r kill -9
for port in 8000 8100 8200; do lsof -t -i:$port | xargs -r kill -9; done
sleep 1
}
@ -58,7 +60,7 @@ launch_chunked_prefill() {
launch_disagg_prefill() {
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
# disagg prefill
CUDA_VISIBLE_DEVICES=0 python3 \
-m vllm.entrypoints.openai.api_server \
@ -97,20 +99,20 @@ benchmark() {
output_len=$2
tag=$3
python3 ../benchmark_serving.py \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8000 \
--save-result \
--result-dir $results_folder \
--result-filename "$tag"-qps-"$qps".json \
--request-rate "$qps"
vllm bench serve \
--backend vllm \
--model $model \
--dataset-name $dataset_name \
--dataset-path $dataset_path \
--sonnet-input-len $input_len \
--sonnet-output-len "$output_len" \
--sonnet-prefix-len $prefix_len \
--num-prompts $num_prompts \
--port 8000 \
--save-result \
--result-dir $results_folder \
--result-filename "$tag"-qps-"$qps".json \
--request-rate "$qps"
sleep 2
}

View File

@ -576,7 +576,11 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in ("DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"):
elif config.architectures[0] in (
"DeepseekV3ForCausalLM",
"DeepseekV2ForCausalLM",
"Glm4MoeForCausalLM",
):
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
@ -586,6 +590,11 @@ def main(args: argparse.Namespace):
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in ("HunYuanMoEV1ForCausalLM"):
E = config.num_experts
topk = config.moe_topk[0]
intermediate_size = config.moe_intermediate_size[0]
shard_intermediate_size = 2 * intermediate_size // args.tp_size
else:
# Support for llama4
config = config.get_text_config()

View File

@ -5,9 +5,8 @@ import itertools
import torch
from vllm import _custom_ops as ops
from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
moe_align_block_size_triton,
moe_align_block_size,
)
from vllm.triton_utils import triton
@ -21,62 +20,6 @@ def get_topk_ids(num_tokens: int, num_experts: int, topk: int) -> torch.Tensor:
)
def check_correctness(num_tokens, num_experts=256, block_size=256, topk=8):
"""
Verifies vllm vs. Triton
"""
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
# 1. malloc space for triton and vllm
# malloc enough space (max_num_tokens_padded) for the sorted ids
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
sorted_ids_triton = torch.empty(
(max_num_tokens_padded,), dtype=torch.int32, device="cuda"
)
sorted_ids_triton.fill_(topk_ids.numel()) # fill with sentinel value
expert_ids_triton = torch.zeros(
(max_num_tokens_padded // block_size,), dtype=torch.int32, device="cuda"
)
num_tokens_post_pad_triton = torch.empty((1,), dtype=torch.int32, device="cuda")
sorted_ids_vllm = torch.empty_like(sorted_ids_triton)
sorted_ids_vllm.fill_(topk_ids.numel())
expert_ids_vllm = torch.zeros_like(expert_ids_triton)
num_tokens_post_pad_vllm = torch.empty_like(num_tokens_post_pad_triton)
# 2. run implementations
moe_align_block_size_triton(
topk_ids,
num_experts,
block_size,
sorted_ids_triton,
expert_ids_triton,
num_tokens_post_pad_triton,
)
ops.moe_align_block_size(
topk_ids,
num_experts,
block_size,
sorted_ids_vllm,
expert_ids_vllm,
num_tokens_post_pad_vllm,
)
print(f"✅ VLLM implementation works with {num_experts} experts!")
# 3. compare results
if torch.allclose(expert_ids_triton, expert_ids_vllm) and torch.allclose(
num_tokens_post_pad_triton, num_tokens_post_pad_vllm
):
print("✅ Triton and VLLM implementations match.")
else:
print("❌ Triton and VLLM implementations DO NOT match.")
print("Triton expert_ids:", expert_ids_triton)
print("VLLM expert_ids:", expert_ids_vllm)
print("Triton num_tokens_post_pad:", num_tokens_post_pad_triton)
print("VLLM num_tokens_post_pad:", num_tokens_post_pad_vllm)
# test configurations
num_tokens_range = [1, 16, 256, 4096]
num_experts_range = [16, 64, 224, 256, 280, 512]
@ -89,8 +32,8 @@ configs = list(itertools.product(num_tokens_range, num_experts_range, topk_range
x_names=["num_tokens", "num_experts", "topk"],
x_vals=configs,
line_arg="provider",
line_vals=["vllm", "triton"], # "triton"
line_names=["VLLM", "Triton"], # "Triton"
line_vals=["vllm"],
line_names=["vLLM"],
plot_name="moe-align-block-size-performance",
args={},
)
@ -100,37 +43,11 @@ def benchmark(num_tokens, num_experts, topk, provider):
block_size = 256
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
sorted_ids = torch.empty((max_num_tokens_padded,), dtype=torch.int32, device="cuda")
sorted_ids.fill_(topk_ids.numel())
max_num_m_blocks = max_num_tokens_padded // block_size
expert_ids = torch.empty((max_num_m_blocks,), dtype=torch.int32, device="cuda")
num_tokens_post_pad = torch.empty((1,), dtype=torch.int32, device="cuda")
quantiles = [0.5, 0.2, 0.8]
if provider == "vllm":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: ops.moe_align_block_size(
topk_ids,
num_experts,
block_size,
sorted_ids.clone(),
expert_ids.clone(),
num_tokens_post_pad.clone(),
),
quantiles=quantiles,
)
elif provider == "triton":
ms, min_ms, max_ms = triton.testing.do_bench(
lambda: moe_align_block_size_triton(
topk_ids,
num_experts,
block_size,
sorted_ids.clone(),
expert_ids.clone(),
num_tokens_post_pad.clone(),
),
lambda: moe_align_block_size(topk_ids, block_size, num_experts),
quantiles=quantiles,
)
@ -154,6 +71,4 @@ if __name__ == "__main__":
)
args = parser.parse_args()
print("Running correctness check...")
check_correctness(num_tokens=1024, num_experts=args.num_experts, topk=args.topk)
benchmark.run(print_data=True, show_plots=True)

View File

@ -8,12 +8,13 @@ import ray
import torch
from transformers import AutoConfig
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import (
_moe_permute,
_moe_unpermute_and_reduce,
moe_permute,
moe_unpermute,
)
from vllm.model_executor.layers.fused_moe.fused_moe import *
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import *
from vllm.model_executor.layers.fused_moe.utils import _fp8_quantize
from vllm.platforms import current_platform
from vllm.utils import FlexibleArgumentParser
@ -63,18 +64,19 @@ def benchmark_permute(
def run():
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
(
permuted_hidden_states,
a1q_scale,
first_token_off,
inv_perm_idx,
m_indices,
) = moe_permute(
qhidden_states,
a1q_scale=None,
topk_ids=topk_ids,
n_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
else:
(
@ -150,18 +152,19 @@ def benchmark_unpermute(
def prepare():
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
moe_permute(
qhidden_states,
topk_weights=topk_weights,
topk_ids=topk_ids,
token_expert_indices=token_expert_indices,
topk=topk,
n_expert=num_experts,
n_local_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
(
permuted_hidden_states,
a1q_scale,
first_token_off,
inv_perm_idx,
m_indices,
) = moe_permute(
qhidden_states,
a1q_scale=None,
topk_ids=topk_ids,
n_expert=num_experts,
expert_map=None,
align_block_size=align_block_size,
)
# convert to fp16/bf16 as gemm output
return (
@ -191,16 +194,19 @@ def benchmark_unpermute(
def run(input: tuple):
if use_customized_permute:
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = input
(
permuted_hidden_states,
first_token_off,
inv_perm_idx,
m_indices,
) = input
output = torch.empty_like(hidden_states)
moe_unpermute(
output,
permuted_hidden_states,
topk_weights,
topk_ids,
inv_perm_idx,
first_token_off,
topk,
num_experts,
num_experts,
)
else:
(
@ -211,7 +217,11 @@ def benchmark_unpermute(
inv_perm,
) = input
_moe_unpermute_and_reduce(
output_hidden_states, permuted_hidden_states, inv_perm, topk_weights
output_hidden_states,
permuted_hidden_states,
inv_perm,
topk_weights,
True,
)
# JIT compilation & warmup
@ -318,6 +328,7 @@ def main(args: argparse.Namespace):
elif (
config.architectures[0] == "DeepseekV3ForCausalLM"
or config.architectures[0] == "DeepseekV2ForCausalLM"
or config.architectures[0] == "Glm4MoeForCausalLM"
):
E = config.n_routed_experts
topk = config.num_experts_per_tok

View File

@ -0,0 +1,108 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import gc
import time
from typing import Optional
from tabulate import tabulate
from vllm.utils import FlexibleArgumentParser
from vllm.v1.core.block_pool import BlockPool
class Metric:
def __init__(self) -> None:
self.cnt: int = 0
self.sum_v: int = 0
self.max_v: Optional[int] = None
def update(self, v: int) -> None:
self.cnt += 1
self.sum_v += v
if self.max_v is None:
self.max_v = v
else:
self.max_v = max(self.max_v, v)
def avg_v(self) -> float:
return self.sum_v * 1.0 / self.cnt
def main(args):
rows = []
for allocate_block in args.allocate_blocks:
# Enforce a GC collect ahead to minimize the impact among runs
gc.collect()
block_pool = BlockPool(num_gpu_blocks=args.num_gpu_blocks, enable_caching=True)
get_blocks_metric: Metric = Metric()
free_blocks_metric: Metric = Metric()
for _ in range(args.num_iteration):
t1 = time.monotonic_ns()
blocks = block_pool.get_new_blocks(allocate_block)
t2 = time.monotonic_ns()
block_pool.free_blocks(blocks)
t3 = time.monotonic_ns()
get_blocks_metric.update(t2 - t1)
free_blocks_metric.update(t3 - t2)
if get_blocks_metric.max_v is not None and free_blocks_metric.max_v is not None:
rows.append(
[
get_blocks_metric.cnt,
args.num_gpu_blocks,
allocate_block,
get_blocks_metric.avg_v() / 1000000,
get_blocks_metric.max_v / 1000000.0,
free_blocks_metric.avg_v() / 1000000,
free_blocks_metric.max_v / 1000000.0,
]
)
else:
print(
"No valid metrics found."
f" {get_blocks_metric.max_v=} {free_blocks_metric.max_v=}"
)
print(
tabulate(
rows,
headers=[
"Iterations",
"Total\nBlocks",
"Allocated\nBlocks",
"Get Blocks\nAvg (ms)",
"Get Blocks\nMax (ms)",
"Free Blocks\nAvg (ms)",
"Free Blocks\nMax (ms)",
],
tablefmt="grid",
floatfmt=".6f",
)
)
def invoke_main() -> None:
parser = FlexibleArgumentParser(
description="Benchmark the performance of BlockPool for KV Cache."
)
parser.add_argument("--num-gpu-blocks", type=int, default=100000)
parser.add_argument(
"--num-iteration",
type=int,
default=1000,
help="Number of iterations to run to stablize final data readings",
)
parser.add_argument(
"--allocate-blocks",
type=int,
nargs="*",
default=[10, 50, 100, 500, 1000],
help="Number of blocks to allocate",
)
args = parser.parse_args()
main(args)
if __name__ == "__main__":
invoke_main() # pragma: no cover

View File

@ -58,6 +58,22 @@ function (find_isa CPUINFO TARGET OUT)
endif()
endfunction()
function(check_sysctl TARGET OUT)
execute_process(COMMAND sysctl -n "${TARGET}"
RESULT_VARIABLE SYSCTL_RET
OUTPUT_VARIABLE SYSCTL_INFO
ERROR_QUIET
OUTPUT_STRIP_TRAILING_WHITESPACE)
if(SYSCTL_RET EQUAL 0 AND
(SYSCTL_INFO STREQUAL "1" OR SYSCTL_INFO GREATER 0))
set(${OUT} ON PARENT_SCOPE)
else()
set(${OUT} OFF PARENT_SCOPE)
endif()
endfunction()
function (is_avx512_disabled OUT)
set(DISABLE_AVX512 $ENV{VLLM_CPU_DISABLE_AVX512})
if(DISABLE_AVX512 AND DISABLE_AVX512 STREQUAL "true")
@ -70,7 +86,10 @@ endfunction()
is_avx512_disabled(AVX512_DISABLED)
if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
set(APPLE_SILICON_FOUND TRUE)
message(STATUS "Apple Silicon Detected")
set(ENABLE_NUMA OFF)
check_sysctl(hw.optional.neon ASIMD_FOUND)
check_sysctl(hw.optional.arm.FEAT_BF16 ARM_BF16_FOUND)
else()
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
@ -82,7 +101,6 @@ else()
find_isa(${CPUINFO} "S390" S390_FOUND)
endif()
if (AVX512_FOUND AND NOT AVX512_DISABLED)
list(APPEND CXX_COMPILE_FLAGS
"-mavx512f"
@ -149,9 +167,6 @@ elseif (ASIMD_FOUND)
set(MARCH_FLAGS "-march=armv8.2-a+dotprod+fp16")
endif()
list(APPEND CXX_COMPILE_FLAGS ${MARCH_FLAGS})
elseif(APPLE_SILICON_FOUND)
message(STATUS "Apple Silicon Detected")
set(ENABLE_NUMA OFF)
elseif (S390_FOUND)
message(STATUS "S390 detected")
# Check for S390 VXE support

View File

@ -24,7 +24,7 @@
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#include "cuda_compat.h"
#include "../cuda_compat.h"
#ifdef USE_ROCM
#include <hip/hip_bf16.h>

View File

@ -16,9 +16,8 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "attention_kernels.cuh"
#include "cuda_compat.h"
#include "../cuda_compat.h"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -75,7 +74,7 @@ void paged_attention_v1_launcher(
const float* k_scale_ptr = reinterpret_cast<const float*>(k_scale.data_ptr());
const float* v_scale_ptr = reinterpret_cast<const float*>(v_scale.data_ptr());
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
const int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int padded_max_seq_len =
DIVIDE_ROUND_UP(max_seq_len, BLOCK_SIZE) * BLOCK_SIZE;
int logits_size = padded_max_seq_len * sizeof(float);

View File

@ -16,9 +16,8 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "attention_kernels.cuh"
#include "cuda_compat.h"
#include "../cuda_compat.h"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
@ -79,7 +78,7 @@ void paged_attention_v2_launcher(
const float* k_scale_ptr = reinterpret_cast<const float*>(k_scale.data_ptr());
const float* v_scale_ptr = reinterpret_cast<const float*>(v_scale.data_ptr());
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
const int NUM_WARPS = NUM_THREADS / WARP_SIZE;
int max_num_partitions = DIVIDE_ROUND_UP(max_seq_len, PARTITION_SIZE);
int logits_size = PARTITION_SIZE * sizeof(float);
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);

View File

@ -7,7 +7,7 @@
namespace {
#define MAX_SHM_RANK_NUM 8
#define PER_THREAD_SHM_BUFFER_BYTES (2 * 1024 * 1024)
#define PER_THREAD_SHM_BUFFER_BYTES (4 * 1024 * 1024)
static_assert(PER_THREAD_SHM_BUFFER_BYTES % 2 == 0);
#define PER_THREAD_SHM_BUFFER_OFFSET (PER_THREAD_SHM_BUFFER_BYTES >> 1)
#define MIN_THREAD_PROCESS_SIZE (256)
@ -34,9 +34,10 @@ struct KernelVecType<c10::Half> {
};
struct ThreadSHMContext {
volatile char _curr_thread_stamp;
volatile char _ready_thread_stamp;
char _padding1[6];
volatile char _curr_thread_stamp[2];
volatile char _ready_thread_stamp[2];
int local_stamp_buffer_idx;
int remote_stamp_buffer_idx;
int thread_id;
int thread_num;
int rank;
@ -45,23 +46,28 @@ struct ThreadSHMContext {
int swizzled_ranks[MAX_SHM_RANK_NUM];
void* thread_shm_ptrs[MAX_SHM_RANK_NUM];
ThreadSHMContext* shm_contexts[MAX_SHM_RANK_NUM];
size_t _thread_buffer_mask;
char _padding2[56];
size_t _thread_buffer_mask[2];
char _padding2[40];
ThreadSHMContext(const int thread_id, const int thread_num, const int rank,
const int group_size, void* thread_shm_ptr)
: _curr_thread_stamp(1),
_ready_thread_stamp(0),
: local_stamp_buffer_idx(0),
remote_stamp_buffer_idx(0),
thread_id(thread_id),
thread_num(thread_num),
rank(rank),
group_size(group_size),
_spinning_count(0),
_thread_buffer_mask(0) {
_spinning_count(0) {
static_assert(sizeof(ThreadSHMContext) % 64 == 0);
TORCH_CHECK(group_size <= MAX_SHM_RANK_NUM);
TORCH_CHECK((size_t)this % 64 == 0);
TORCH_CHECK((size_t)thread_shm_ptr % 64 == 0);
_curr_thread_stamp[0] = 1;
_curr_thread_stamp[1] = 1;
_ready_thread_stamp[0] = 0;
_ready_thread_stamp[1] = 0;
_thread_buffer_mask[0] = 0;
_thread_buffer_mask[1] = 0;
for (int i = 0; i < MAX_SHM_RANK_NUM; ++i) {
shm_contexts[i] = nullptr;
thread_shm_ptrs[i] = nullptr;
@ -70,6 +76,11 @@ struct ThreadSHMContext {
set_context(rank, this, thread_shm_ptr);
}
void set_stamp_buffer_idx(int local, int remote) {
local_stamp_buffer_idx = local;
remote_stamp_buffer_idx = remote;
}
void set_context(int rank, ThreadSHMContext* ptr, void* thread_shm_ptr) {
TORCH_CHECK(rank < MAX_SHM_RANK_NUM);
TORCH_CHECK(ptr);
@ -84,23 +95,27 @@ struct ThreadSHMContext {
T* get_thread_shm_ptr(int rank) {
return reinterpret_cast<T*>(
reinterpret_cast<int8_t*>(thread_shm_ptrs[rank]) +
(PER_THREAD_SHM_BUFFER_OFFSET & _thread_buffer_mask));
(PER_THREAD_SHM_BUFFER_OFFSET &
_thread_buffer_mask[local_stamp_buffer_idx]));
}
void next_buffer() { _thread_buffer_mask ^= 0xFFFFFFFFFFFFFFFF; }
void next_buffer() {
_thread_buffer_mask[local_stamp_buffer_idx] ^= 0xFFFFFFFFFFFFFFFF;
}
char get_curr_stamp() const { return _curr_thread_stamp; }
char get_curr_stamp(int idx) const { return _curr_thread_stamp[idx]; }
char get_ready_stamp() const { return _ready_thread_stamp; }
char get_ready_stamp(int idx) const { return _ready_thread_stamp[idx]; }
void next_stamp() {
_mm_mfence();
_curr_thread_stamp += 1;
_curr_thread_stamp[local_stamp_buffer_idx] += 1;
}
void commit_ready_stamp() {
_mm_mfence();
_ready_thread_stamp = _curr_thread_stamp;
_ready_thread_stamp[local_stamp_buffer_idx] =
_curr_thread_stamp[local_stamp_buffer_idx];
}
int get_swizzled_rank(int idx) { return swizzled_ranks[idx]; }
@ -117,10 +132,11 @@ struct ThreadSHMContext {
void wait_for_one(int rank, Cond&& cond) {
ThreadSHMContext* rank_ctx = shm_contexts[rank];
for (;;) {
char local_curr_stamp = get_curr_stamp();
char local_ready_stamp = get_ready_stamp();
char rank_curr_stamp = rank_ctx->get_curr_stamp();
char rank_ready_stamp = rank_ctx->get_ready_stamp();
char local_curr_stamp = get_curr_stamp(local_stamp_buffer_idx);
char local_ready_stamp = get_ready_stamp(local_stamp_buffer_idx);
char rank_curr_stamp = rank_ctx->get_curr_stamp(remote_stamp_buffer_idx);
char rank_ready_stamp =
rank_ctx->get_ready_stamp(remote_stamp_buffer_idx);
if (cond(local_curr_stamp, local_ready_stamp, rank_curr_stamp,
rank_ready_stamp)) {
break;
@ -361,6 +377,15 @@ void shm_cc_loop(ThreadSHMContext* ctx, int64_t elem_num, F&& inner_func) {
}
}
}
void reset_threads_stamp_buffer_idx(ThreadSHMContext* ctx, int local,
int remote) {
int thread_num = ctx->thread_num;
for (int i = 0; i < thread_num; ++i) {
ThreadSHMContext* thread_ctx = ctx + i;
thread_ctx->set_stamp_buffer_idx(local, remote);
}
}
}; // namespace shm_cc_ops
namespace shm_cc_ops {
@ -632,6 +657,7 @@ void shm_send_tensor_list_impl(ThreadSHMContext* ctx, int64_t dst,
TensorListMeta* metadata = new (metadata_tensor.data_ptr()) TensorListMeta();
metadata->bind_tensor_list(tensor_list_with_metadata);
shm_cc_ops::reset_threads_stamp_buffer_idx(ctx, 0, 1);
shm_cc_ops::shm_cc_loop<int8_t>(
ctx, metadata->total_bytes,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
@ -659,6 +685,7 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
torch::Tensor metadata_tensor =
torch::empty({sizeof(TensorListMeta)}, options);
shm_cc_ops::reset_threads_stamp_buffer_idx(ctx, 1, 0);
ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
shm_cc_ops::memcpy(metadata_tensor.data_ptr(),
ctx->get_thread_shm_ptr<void>(src),
@ -677,7 +704,7 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
ctx, metadata.total_bytes,
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
int64_t data_elem_num, bool fast_mode) {
ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
thread_ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
int64_t curr_shm_offset = 0;
while (curr_shm_offset < data_elem_num) {
MemPiece frag = metadata.get_data(data_offset + curr_shm_offset);

View File

@ -151,7 +151,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
// Quantization
#if defined(__AVX512F__) || defined(__aarch64__)
#if defined(__AVX512F__) || (defined(__aarch64__) && !defined(__APPLE__))
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
// Compute int8 quantized tensor for given scaling factor.

View File

@ -4,8 +4,35 @@
#include <hip/hip_runtime.h>
#endif
#if defined(USE_ROCM) && defined(__GFX9__)
#define WARP_SIZE 64
#ifdef USE_ROCM
struct Utils {
static __host__ int get_warp_size() {
static bool is_cached = false;
static int result;
if (!is_cached) {
int device_id;
cudaDeviceProp deviceProp;
cudaGetDevice(&device_id);
cudaGetDeviceProperties(&deviceProp, device_id);
result = deviceProp.warpSize;
is_cached = true;
}
return result;
}
static __device__ constexpr int get_warp_size() {
#ifdef __GFX9__
return 64;
#else
return 32;
#endif
}
};
#define WARP_SIZE Utils::get_warp_size()
#else
#define WARP_SIZE 32
#endif

View File

@ -15,15 +15,16 @@ namespace vllm {
// TODO(woosuk): Further optimize this kernel.
template <typename scalar_t>
__global__ void rms_norm_kernel(
scalar_t* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const int64_t input_stride,
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon, const int num_tokens, const int hidden_size) {
__shared__ float s_variance;
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
const float x = (float)input[blockIdx.x * hidden_size + idx];
const float x = (float)input[blockIdx.x * input_stride + idx];
variance += x * x;
}
@ -37,7 +38,7 @@ __global__ void rms_norm_kernel(
__syncthreads();
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)input[blockIdx.x * hidden_size + idx];
float x = (float)input[blockIdx.x * input_stride + idx];
out[blockIdx.x * hidden_size + idx] =
((scalar_t)(x * s_variance)) * weight[idx];
}
@ -50,7 +51,8 @@ __global__ void rms_norm_kernel(
template <typename scalar_t, int width>
__global__ std::enable_if_t<(width > 0) && _typeConvert<scalar_t>::exists>
fused_add_rms_norm_kernel(
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ input, // [..., hidden_size]
const int64_t input_stride,
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon, const int num_tokens, const int hidden_size) {
@ -59,6 +61,7 @@ fused_add_rms_norm_kernel(
static_assert(sizeof(_f16Vec<scalar_t, width>) == sizeof(scalar_t) * width);
const int vec_hidden_size = hidden_size / width;
const int64_t vec_input_stride = input_stride / width;
__shared__ float s_variance;
float variance = 0.0f;
/* These and the argument pointers are all declared `restrict` as they are
@ -73,7 +76,8 @@ fused_add_rms_norm_kernel(
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = input_v[id];
int64_t strided_id = blockIdx.x * vec_input_stride + idx;
_f16Vec<scalar_t, width> temp = input_v[strided_id];
temp += residual_v[id];
variance += temp.sum_squares();
residual_v[id] = temp;
@ -90,10 +94,11 @@ fused_add_rms_norm_kernel(
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int id = blockIdx.x * vec_hidden_size + idx;
int64_t strided_id = blockIdx.x * vec_input_stride + idx;
_f16Vec<scalar_t, width> temp = residual_v[id];
temp *= s_variance;
temp *= weight_v[idx];
input_v[id] = temp;
input_v[strided_id] = temp;
}
}
@ -103,7 +108,8 @@ fused_add_rms_norm_kernel(
template <typename scalar_t, int width>
__global__ std::enable_if_t<(width == 0) || !_typeConvert<scalar_t>::exists>
fused_add_rms_norm_kernel(
scalar_t* __restrict__ input, // [..., hidden_size]
scalar_t* __restrict__ input, // [..., hidden_size]
const int64_t input_stride,
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float epsilon, const int num_tokens, const int hidden_size) {
@ -111,7 +117,7 @@ fused_add_rms_norm_kernel(
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
scalar_t z = input[blockIdx.x * hidden_size + idx];
scalar_t z = input[blockIdx.x * input_stride + idx];
z += residual[blockIdx.x * hidden_size + idx];
float x = (float)z;
variance += x * x;
@ -129,7 +135,7 @@ fused_add_rms_norm_kernel(
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)residual[blockIdx.x * hidden_size + idx];
input[blockIdx.x * hidden_size + idx] =
input[blockIdx.x * input_stride + idx] =
((scalar_t)(x * s_variance)) * weight[idx];
}
}
@ -141,11 +147,12 @@ void rms_norm(torch::Tensor& out, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
double epsilon) {
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(input.stride(-1) == 1);
TORCH_CHECK(weight.is_contiguous());
int hidden_size = input.size(-1);
int num_tokens = input.numel() / hidden_size;
int64_t input_stride = input.stride(-2);
dim3 grid(num_tokens);
dim3 block(std::min(hidden_size, 1024));
@ -153,26 +160,29 @@ void rms_norm(torch::Tensor& out, // [..., hidden_size]
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_kernel", [&] {
vllm::rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(), input_stride,
weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
});
}
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "fused_add_rms_norm_kernel", [&] { \
vllm::fused_add_rms_norm_kernel<scalar_t, width> \
<<<grid, block, 0, stream>>>(input.data_ptr<scalar_t>(), \
residual.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), epsilon, \
num_tokens, hidden_size); \
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "fused_add_rms_norm_kernel", [&] { \
vllm::fused_add_rms_norm_kernel<scalar_t, width> \
<<<grid, block, 0, stream>>>( \
input.data_ptr<scalar_t>(), input_stride, \
residual.data_ptr<scalar_t>(), weight.data_ptr<scalar_t>(), \
epsilon, num_tokens, hidden_size); \
});
void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
torch::Tensor& residual, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
double epsilon) {
TORCH_CHECK(residual.is_contiguous());
TORCH_CHECK(weight.is_contiguous());
int hidden_size = input.size(-1);
int64_t input_stride = input.stride(-2);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
@ -194,9 +204,16 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
auto res_ptr = reinterpret_cast<std::uintptr_t>(residual.data_ptr());
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned =
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0) {
constexpr int vector_width = 8;
constexpr int req_alignment_bytes =
vector_width * 2; // vector_width * sizeof(bfloat16 or float16) (float32
// falls back to non-vectorized version anyway)
bool ptrs_are_aligned = inp_ptr % req_alignment_bytes == 0 &&
res_ptr % req_alignment_bytes == 0 &&
wt_ptr % req_alignment_bytes == 0;
bool offsets_are_multiple_of_vector_width =
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);

View File

@ -23,8 +23,9 @@ namespace vllm {
// TODO(woosuk): Further optimize this kernel.
template <typename scalar_t, typename fp8_type>
__global__ void rms_norm_static_fp8_quant_kernel(
fp8_type* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
fp8_type* __restrict__ out, // [..., hidden_size]
const scalar_t* __restrict__ input, // [..., hidden_size]
const int input_stride,
const scalar_t* __restrict__ weight, // [hidden_size]
const float* __restrict__ scale, // [1]
const float epsilon, const int num_tokens, const int hidden_size) {
@ -32,7 +33,7 @@ __global__ void rms_norm_static_fp8_quant_kernel(
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
const float x = (float)input[blockIdx.x * hidden_size + idx];
const float x = (float)input[blockIdx.x * input_stride + idx];
variance += x * x;
}
@ -49,7 +50,7 @@ __global__ void rms_norm_static_fp8_quant_kernel(
float const scale_inv = 1.0f / *scale;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
float x = (float)input[blockIdx.x * hidden_size + idx];
float x = (float)input[blockIdx.x * input_stride + idx];
float const out_norm = ((scalar_t)(x * s_variance)) * weight[idx];
out[blockIdx.x * hidden_size + idx] =
scaled_fp8_conversion<true, fp8_type>(out_norm, scale_inv);
@ -63,8 +64,9 @@ __global__ void rms_norm_static_fp8_quant_kernel(
template <typename scalar_t, int width, typename fp8_type>
__global__ std::enable_if_t<(width > 0) && _typeConvert<scalar_t>::exists>
fused_add_rms_norm_static_fp8_quant_kernel(
fp8_type* __restrict__ out, // [..., hidden_size]
scalar_t* __restrict__ input, // [..., hidden_size]
fp8_type* __restrict__ out, // [..., hidden_size]
scalar_t* __restrict__ input, // [..., hidden_size]
const int input_stride,
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float* __restrict__ scale, // [1]
@ -74,6 +76,7 @@ fused_add_rms_norm_static_fp8_quant_kernel(
static_assert(sizeof(_f16Vec<scalar_t, width>) == sizeof(scalar_t) * width);
const int vec_hidden_size = hidden_size / width;
const int vec_input_stride = input_stride / width;
__shared__ float s_variance;
float variance = 0.0f;
/* These and the argument pointers are all declared `restrict` as they are
@ -87,8 +90,9 @@ fused_add_rms_norm_static_fp8_quant_kernel(
reinterpret_cast<const _f16Vec<scalar_t, width>*>(weight);
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
int stride_id = blockIdx.x * vec_input_stride + idx;
int id = blockIdx.x * vec_hidden_size + idx;
_f16Vec<scalar_t, width> temp = input_v[id];
_f16Vec<scalar_t, width> temp = input_v[stride_id];
temp += residual_v[id];
variance += temp.sum_squares();
residual_v[id] = temp;
@ -125,8 +129,9 @@ fused_add_rms_norm_static_fp8_quant_kernel(
template <typename scalar_t, int width, typename fp8_type>
__global__ std::enable_if_t<(width == 0) || !_typeConvert<scalar_t>::exists>
fused_add_rms_norm_static_fp8_quant_kernel(
fp8_type* __restrict__ out, // [..., hidden_size]
scalar_t* __restrict__ input, // [..., hidden_size]
fp8_type* __restrict__ out, // [..., hidden_size]
scalar_t* __restrict__ input, // [..., hidden_size]
const int input_stride,
scalar_t* __restrict__ residual, // [..., hidden_size]
const scalar_t* __restrict__ weight, // [hidden_size]
const float* __restrict__ scale, // [1]
@ -135,7 +140,7 @@ fused_add_rms_norm_static_fp8_quant_kernel(
float variance = 0.0f;
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
scalar_t z = input[blockIdx.x * hidden_size + idx];
scalar_t z = input[blockIdx.x * input_stride + idx];
z += residual[blockIdx.x * hidden_size + idx];
float x = (float)z;
variance += x * x;
@ -169,7 +174,9 @@ void rms_norm_static_fp8_quant(torch::Tensor& out, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
torch::Tensor& scale, // [1]
double epsilon) {
TORCH_CHECK(out.is_contiguous());
int hidden_size = input.size(-1);
int input_stride = input.stride(-2);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
@ -183,8 +190,9 @@ void rms_norm_static_fp8_quant(torch::Tensor& out, // [..., hidden_size]
vllm::rms_norm_static_fp8_quant_kernel<scalar_t, fp8_t>
<<<grid, block, 0, stream>>>(
out.data_ptr<fp8_t>(), input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(), scale.data_ptr<float>(),
epsilon, num_tokens, hidden_size);
input_stride, weight.data_ptr<scalar_t>(),
scale.data_ptr<float>(), epsilon, num_tokens,
hidden_size);
});
});
}
@ -198,7 +206,7 @@ void rms_norm_static_fp8_quant(torch::Tensor& out, // [..., hidden_size]
width, fp8_t> \
<<<grid, block, 0, stream>>>( \
out.data_ptr<fp8_t>(), input.data_ptr<scalar_t>(), \
residual.data_ptr<scalar_t>(), \
input_stride, residual.data_ptr<scalar_t>(), \
weight.data_ptr<scalar_t>(), scale.data_ptr<float>(), \
epsilon, num_tokens, hidden_size); \
}); \
@ -210,7 +218,10 @@ void fused_add_rms_norm_static_fp8_quant(
torch::Tensor& weight, // [hidden_size]
torch::Tensor& scale, // [1]
double epsilon) {
TORCH_CHECK(out.is_contiguous());
TORCH_CHECK(residual.is_contiguous());
int hidden_size = input.size(-1);
int input_stride = input.stride(-2);
int num_tokens = input.numel() / hidden_size;
dim3 grid(num_tokens);
@ -234,7 +245,7 @@ void fused_add_rms_norm_static_fp8_quant(
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
bool ptrs_are_aligned =
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
if (ptrs_are_aligned && hidden_size % 8 == 0) {
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0) {
LAUNCH_FUSED_ADD_RMS_NORM(8);
} else {
LAUNCH_FUSED_ADD_RMS_NORM(0);

View File

@ -1,6 +1,7 @@
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cub/cub.cuh>
#include <ATen/ATen.h>
#include <ATen/cuda/Atomic.cuh>
@ -19,9 +20,14 @@ __global__ void moe_align_block_size_kernel(
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
int32_t* __restrict__ total_tokens_post_pad, int32_t num_experts,
int32_t padded_num_experts, int32_t experts_per_warp, int32_t block_size,
size_t numel, int32_t* __restrict__ cumsum) {
size_t numel, int32_t* __restrict__ cumsum, int32_t max_num_tokens_padded) {
extern __shared__ int32_t shared_counts[];
// Initialize sorted_token_ids with numel
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
sorted_token_ids[it] = numel;
}
const int warp_id = threadIdx.x / WARP_SIZE;
const int my_expert_start = warp_id * experts_per_warp;
@ -45,18 +51,27 @@ __global__ void moe_align_block_size_kernel(
__syncthreads();
if (threadIdx.x == 0) {
cumsum[0] = 0;
for (int i = 1; i <= num_experts; ++i) {
int expert_count = 0;
int warp_idx = (i - 1) / experts_per_warp;
int expert_offset = (i - 1) % experts_per_warp;
expert_count = shared_counts[warp_idx * experts_per_warp + expert_offset];
// Compute prefix sum over token counts per expert
using BlockScan = cub::BlockScan<int32_t, 1024>;
__shared__ typename BlockScan::TempStorage temp_storage;
cumsum[i] =
cumsum[i - 1] + CEILDIV(expert_count, block_size) * block_size;
}
*total_tokens_post_pad = cumsum[num_experts];
int expert_count = 0;
int expert_id = threadIdx.x;
if (expert_id < num_experts) {
int warp_idx = expert_id / experts_per_warp;
int expert_offset = expert_id % experts_per_warp;
expert_count = shared_counts[warp_idx * experts_per_warp + expert_offset];
expert_count = CEILDIV(expert_count, block_size) * block_size;
}
int cumsum_val;
BlockScan(temp_storage).ExclusiveSum(expert_count, cumsum_val);
if (expert_id <= num_experts) {
cumsum[expert_id] = cumsum_val;
}
if (expert_id == num_experts) {
*total_tokens_post_pad = cumsum_val;
}
__syncthreads();
@ -67,6 +82,13 @@ __global__ void moe_align_block_size_kernel(
expert_ids[i / block_size] = threadIdx.x;
}
}
// Fill remaining expert_ids with 0
const size_t fill_start_idx = cumsum[num_experts] / block_size + threadIdx.x;
const size_t expert_ids_size = CEILDIV(max_num_tokens_padded, block_size);
for (size_t i = fill_start_idx; i < expert_ids_size; i += blockDim.x) {
expert_ids[i] = 0;
}
}
template <typename scalar_t>
@ -105,7 +127,12 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
const scalar_t* __restrict__ topk_ids,
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
int32_t* __restrict__ total_tokens_post_pad, int32_t num_experts,
int32_t block_size, size_t numel) {
int32_t block_size, size_t numel, int32_t max_num_tokens_padded) {
// Initialize sorted_token_ids with numel
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
sorted_token_ids[it] = numel;
}
const size_t tid = threadIdx.x;
const size_t stride = blockDim.x;
@ -153,6 +180,13 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
}
}
// Fill remaining expert_ids with 0
const size_t fill_start_idx = cumsum[num_experts] / block_size + threadIdx.x;
const size_t expert_ids_size = CEILDIV(max_num_tokens_padded, block_size);
for (size_t i = fill_start_idx; i < expert_ids_size; i += blockDim.x) {
expert_ids[i] = 0;
}
for (size_t i = tid; i < numel; i += stride) {
int32_t expert_id = topk_ids[i];
int32_t rank_post_pad =
@ -179,13 +213,17 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
int threads = 1024;
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
// BlockScan uses 1024 threads and assigns one thread per expert.
TORCH_CHECK(padded_num_experts < 1024,
"padded_num_experts must be less than 1024");
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
// calc needed amount of shared mem for `cumsum` tensors
auto options_int =
torch::TensorOptions().dtype(torch::kInt).device(topk_ids.device());
torch::Tensor cumsum_buffer =
torch::zeros({num_experts + 1}, options_int);
torch::empty({num_experts + 1}, options_int);
bool small_batch_expert_mode =
(topk_ids.numel() < 1024) && (num_experts <= 64);
@ -203,7 +241,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
sorted_token_ids.data_ptr<int32_t>(),
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
topk_ids.numel());
topk_ids.numel(), sorted_token_ids.size(0));
} else {
auto align_kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
@ -217,7 +255,8 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
experts_ids.data_ptr<int32_t>(),
num_tokens_post_pad.data_ptr<int32_t>(), num_experts,
padded_num_experts, experts_per_warp, block_size,
topk_ids.numel(), cumsum_buffer.data_ptr<int32_t>());
topk_ids.numel(), cumsum_buffer.data_ptr<int32_t>(),
sorted_token_ids.size(0));
const int block_threads = std::min(256, (int)threads);
const int num_blocks =

View File

@ -10,32 +10,28 @@
void moe_permute(
const torch::Tensor& input, // [n_token, hidden]
const torch::Tensor& topk_weights, //[n_token, topk]
torch::Tensor& topk_ids, // [n_token, topk]
const torch::Tensor& topk_ids, // [n_token, topk]
const torch::Tensor& token_expert_indices, // [n_token, topk]
const std::optional<torch::Tensor>& expert_map, // [n_expert]
int64_t n_expert, int64_t n_local_expert, int64_t topk,
const std::optional<int64_t>& align_block_size,
torch::Tensor&
permuted_input, // [topk * n_token/align_block_size_m, hidden]
torch::Tensor& permuted_input, // [permuted_size, hidden]
torch::Tensor& expert_first_token_offset, // [n_local_expert + 1]
torch::Tensor& src_row_id2dst_row_id_map, // [n_token, topk]
torch::Tensor& inv_permuted_idx, // [n_token, topk]
torch::Tensor& permuted_idx, // [permute_size]
torch::Tensor& m_indices) { // [align_expand_m]
TORCH_CHECK(topk_weights.scalar_type() == at::ScalarType::Float,
"topk_weights must be float32");
TORCH_CHECK(expert_first_token_offset.scalar_type() == at::ScalarType::Long,
"expert_first_token_offset must be int64");
TORCH_CHECK(topk_ids.scalar_type() == at::ScalarType::Int,
"topk_ids must be int32");
TORCH_CHECK(token_expert_indices.scalar_type() == at::ScalarType::Int,
"token_expert_indices must be int32");
TORCH_CHECK(src_row_id2dst_row_id_map.scalar_type() == at::ScalarType::Int,
"src_row_id2dst_row_id_map must be int32");
TORCH_CHECK(inv_permuted_idx.scalar_type() == at::ScalarType::Int,
"inv_permuted_idx must be int32");
TORCH_CHECK(expert_first_token_offset.size(0) == n_local_expert + 1,
"expert_first_token_offset shape != n_local_expert+1")
TORCH_CHECK(
src_row_id2dst_row_id_map.sizes() == token_expert_indices.sizes(),
"token_expert_indices shape must be same as src_row_id2dst_row_id_map");
TORCH_CHECK(inv_permuted_idx.sizes() == token_expert_indices.sizes(),
"token_expert_indices shape must be same as inv_permuted_idx");
auto n_token = input.sizes()[0];
auto n_hidden = input.sizes()[1];
auto align_block_size_value =
@ -46,8 +42,9 @@ void moe_permute(
auto sort_workspace = torch::empty(
{sorter_size},
torch::dtype(torch::kInt8).device(torch::kCUDA).requires_grad(false));
auto copy_topk_ids = topk_ids.clone(); // copy topk_ids for preprocess
auto permuted_experts_id = torch::empty_like(topk_ids);
auto dst_row_id2src_row_id_map = torch::empty_like(src_row_id2dst_row_id_map);
auto sorted_row_idx = torch::empty_like(inv_permuted_idx);
auto align_expert_first_token_offset =
torch::zeros_like(expert_first_token_offset);
@ -67,24 +64,22 @@ void moe_permute(
const int* expert_map_ptr = get_ptr<int>(expert_map.value());
valid_num_ptr =
get_ptr<int64_t>(expert_first_token_offset) + n_local_expert;
preprocessTopkIdLauncher(get_ptr<int>(topk_ids), n_token * topk,
preprocessTopkIdLauncher(get_ptr<int>(copy_topk_ids), n_token * topk,
expert_map_ptr, n_expert, stream);
}
// expert sort topk expert id and scan expert id get expert_first_token_offset
sortAndScanExpert(get_ptr<int>(topk_ids), get_ptr<int>(token_expert_indices),
get_ptr<int>(permuted_experts_id),
get_ptr<int>(dst_row_id2src_row_id_map),
get_ptr<int64_t>(expert_first_token_offset), n_token,
n_expert, n_local_expert, topk, sorter,
get_ptr<int>(sort_workspace), stream);
sortAndScanExpert(
get_ptr<int>(copy_topk_ids), get_ptr<int>(token_expert_indices),
get_ptr<int>(permuted_experts_id), get_ptr<int>(sorted_row_idx),
get_ptr<int64_t>(expert_first_token_offset), n_token, n_expert,
n_local_expert, topk, sorter, get_ptr<int>(sort_workspace), stream);
// dispatch expandInputRowsKernelLauncher
MOE_DISPATCH(input.scalar_type(), [&] {
expandInputRowsKernelLauncher<scalar_t>(
get_ptr<scalar_t>(input), get_ptr<scalar_t>(permuted_input),
get_ptr<float>(topk_weights), get_ptr<int>(permuted_experts_id),
get_ptr<int>(dst_row_id2src_row_id_map),
get_ptr<int>(src_row_id2dst_row_id_map),
get_ptr<int>(permuted_experts_id), get_ptr<int>(sorted_row_idx),
get_ptr<int>(inv_permuted_idx), get_ptr<int>(permuted_idx),
get_ptr<int64_t>(expert_first_token_offset), n_token, valid_num_ptr,
n_hidden, topk, n_local_expert, align_block_size_value, stream);
});
@ -101,32 +96,34 @@ void moe_permute(
}
void moe_unpermute(
const torch::Tensor& permuted_hidden_states, // [n_token * topk, hidden]
const torch::Tensor& topk_weights, //[n_token, topk]
const torch::Tensor& topk_ids, // [n_token, topk]
const torch::Tensor& src_row_id2dst_row_id_map, // [n_token, topk]
const torch::Tensor& expert_first_token_offset, // [n_local_expert+1]
int64_t n_expert, int64_t n_local_expert, int64_t topk,
const torch::Tensor& permuted_hidden_states, // [n_token * topk, hidden]
const torch::Tensor& topk_weights, // [n_token, topk]
const torch::Tensor& inv_permuted_idx, // [n_token, topk]
const std::optional<torch::Tensor>&
expert_first_token_offset, // [n_local_expert+1]
int64_t topk,
torch::Tensor& hidden_states // [n_token, hidden]
) {
TORCH_CHECK(src_row_id2dst_row_id_map.sizes() == topk_ids.sizes(),
"topk_ids shape must be same as src_row_id2dst_row_id_map");
TORCH_CHECK(topk_ids.scalar_type() == at::ScalarType::Int,
"topk_ids must be int32");
TORCH_CHECK(
permuted_hidden_states.scalar_type() == hidden_states.scalar_type(),
"topk_ids dtype must be same as src_row_id2dst_row_id_map");
"permuted_hidden_states dtype must be same as hidden_states");
auto n_token = hidden_states.size(0);
auto n_hidden = hidden_states.size(1);
auto stream = at::cuda::getCurrentCUDAStream().stream();
const int64_t* valid_ptr =
get_ptr<int64_t>(expert_first_token_offset) + n_local_expert;
int64_t const* valid_ptr = nullptr;
if (expert_first_token_offset.has_value()) {
int n_local_expert = expert_first_token_offset.value().size(0) - 1;
valid_ptr =
get_ptr<int64_t>(expert_first_token_offset.value()) + n_local_expert;
}
MOE_DISPATCH(hidden_states.scalar_type(), [&] {
finalizeMoeRoutingKernelLauncher<scalar_t, scalar_t>(
get_ptr<scalar_t>(permuted_hidden_states),
get_ptr<scalar_t>(hidden_states), get_ptr<float>(topk_weights),
get_ptr<int>(src_row_id2dst_row_id_map), get_ptr<int>(topk_ids),
n_token, n_hidden, topk, valid_ptr, stream);
get_ptr<int>(inv_permuted_idx), n_token, n_hidden, topk, valid_ptr,
stream);
});
}

View File

@ -177,7 +177,7 @@ __global__ void getMIndicesKernel(int64_t* expert_first_token_offset,
int tidx = threadIdx.x;
extern __shared__ int64_t smem_expert_first_token_offset[];
for (int i = tidx; i <= num_local_expert; i += blockDim.x) {
smem_expert_first_token_offset[tidx] = __ldg(expert_first_token_offset + i);
smem_expert_first_token_offset[i] = __ldg(expert_first_token_offset + i);
}
__syncthreads();
auto last_token_offset = smem_expert_first_token_offset[eidx + 1];

View File

@ -57,31 +57,19 @@ void sortAndScanExpert(int* expert_for_source_row, const int* source_rows,
template <typename T>
void expandInputRowsKernelLauncher(
T const* unpermuted_input, T* permuted_output,
const float* unpermuted_scales, int* sorted_experts,
T const* unpermuted_input, T* permuted_output, int* sorted_experts,
int const* expanded_dest_row_to_expanded_source_row,
int* expanded_source_row_to_expanded_dest_row,
int* expanded_source_row_to_expanded_dest_row, int* permuted_idx,
int64_t* expert_first_token_offset, int64_t const num_rows,
int64_t const* num_valid_tokens_ptr, int64_t const cols, int const k,
int num_local_experts, const int& align_block_size, cudaStream_t stream);
// Final kernel to unpermute and scale
// This kernel unpermutes the original data, does the k-way reduction and
// performs the final skip connection.
template <typename T, typename OutputType, bool CHECK_SKIPPED>
__global__ void finalizeMoeRoutingKernel(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const orig_cols, int64_t const k,
int64_t const* num_valid_ptr);
template <class T, class OutputType>
void finalizeMoeRoutingKernelLauncher(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const num_rows,
int64_t const cols, int64_t const k, int64_t const* num_valid_ptr,
cudaStream_t stream);
int64_t const num_rows, int64_t const cols, int64_t const k,
int64_t const* num_valid_ptr, cudaStream_t stream);
void preprocessTopkIdLauncher(int* topk_id_ptr, int size,
const int* expert_map_ptr, int num_experts,

View File

@ -2,10 +2,9 @@
template <typename T, bool CHECK_SKIPPED, bool ALIGN_BLOCK_SIZE>
__global__ void expandInputRowsKernel(
T const* unpermuted_input, T* permuted_output,
const float* unpermuted_scales, int* sorted_experts,
T const* unpermuted_input, T* permuted_output, int* sorted_experts,
int const* expanded_dest_row_to_expanded_source_row,
int* expanded_source_row_to_expanded_dest_row,
int* expanded_source_row_to_expanded_dest_row, int* permuted_idx,
int64_t* expert_first_token_offset, int64_t const num_rows,
int64_t const* num_dest_rows, int64_t const cols, int64_t k,
int num_local_experts, int align_block_size) {
@ -54,6 +53,10 @@ __global__ void expandInputRowsKernel(
assert(expanded_dest_row <= INT32_MAX);
expanded_source_row_to_expanded_dest_row[expanded_source_row] =
static_cast<int>(expanded_dest_row);
// skip non local expert token
if (!CHECK_SKIPPED || blockIdx.x < *num_dest_rows) {
permuted_idx[expanded_dest_row] = expanded_source_row;
}
}
if (!CHECK_SKIPPED || blockIdx.x < *num_dest_rows) {
@ -62,7 +65,7 @@ __global__ void expandInputRowsKernel(
using DataElem = cutlass::Array<T, ELEM_PER_THREAD>;
// Duplicate and permute rows
int64_t const source_row = expanded_source_row % num_rows;
int64_t const source_row = expanded_source_row / k;
auto const* source_row_ptr =
reinterpret_cast<DataElem const*>(unpermuted_input + source_row * cols);
@ -82,10 +85,9 @@ __global__ void expandInputRowsKernel(
template <typename T>
void expandInputRowsKernelLauncher(
T const* unpermuted_input, T* permuted_output,
const float* unpermuted_scales, int* sorted_experts,
T const* unpermuted_input, T* permuted_output, int* sorted_experts,
int const* expanded_dest_row_to_expanded_source_row,
int* expanded_source_row_to_expanded_dest_row,
int* expanded_source_row_to_expanded_dest_row, int* permuted_idx,
int64_t* expert_first_token_offset, int64_t const num_rows,
int64_t const* num_valid_tokens_ptr, int64_t const cols, int const k,
int num_local_experts, const int& align_block_size, cudaStream_t stream) {
@ -105,11 +107,11 @@ void expandInputRowsKernelLauncher(
int64_t smem_size = sizeof(int64_t) * (num_local_experts + 1);
func<<<blocks, threads, smem_size, stream>>>(
unpermuted_input, permuted_output, unpermuted_scales, sorted_experts,
unpermuted_input, permuted_output, sorted_experts,
expanded_dest_row_to_expanded_source_row,
expanded_source_row_to_expanded_dest_row, expert_first_token_offset,
num_rows, num_valid_tokens_ptr, cols, k, num_local_experts,
align_block_size);
expanded_source_row_to_expanded_dest_row, permuted_idx,
expert_first_token_offset, num_rows, num_valid_tokens_ptr, cols, k,
num_local_experts, align_block_size);
}
template <class T, class U>
@ -128,11 +130,9 @@ template <typename T, typename OutputType, bool CHECK_SKIPPED>
__global__ void finalizeMoeRoutingKernel(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const orig_cols, int64_t const k,
int64_t const* num_valid_ptr) {
int64_t const orig_cols, int64_t const k, int64_t const* num_valid_ptr) {
assert(orig_cols % 4 == 0);
int64_t const original_row = blockIdx.x;
int64_t const num_rows = gridDim.x;
auto const offset = original_row * orig_cols;
OutputType* reduced_row_ptr = reduced_unpermuted_output + offset;
int64_t const num_valid = *num_valid_ptr;
@ -159,14 +159,13 @@ __global__ void finalizeMoeRoutingKernel(
ComputeElem thread_output;
thread_output.fill(0);
for (int k_idx = 0; k_idx < k; ++k_idx) {
int64_t const expanded_original_row = original_row + k_idx * num_rows;
int64_t const expanded_original_row = original_row * k + k_idx;
int64_t const expanded_permuted_row =
expanded_source_row_to_expanded_dest_row[expanded_original_row];
int64_t const k_offset = original_row * k + k_idx;
float const row_scale = scales[k_offset];
// Check after row_rescale has accumulated
if (CHECK_SKIPPED && expanded_permuted_row >= num_valid) {
continue;
}
@ -189,9 +188,8 @@ template <class T, class OutputType>
void finalizeMoeRoutingKernelLauncher(
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
int const* expert_for_source_row, int64_t const num_rows,
int64_t const cols, int64_t const k, int64_t const* num_valid_ptr,
cudaStream_t stream) {
int64_t const num_rows, int64_t const cols, int64_t const k,
int64_t const* num_valid_ptr, cudaStream_t stream) {
int64_t const blocks = num_rows;
int64_t const threads = 256;
bool const check_finished = num_valid_ptr != nullptr;
@ -201,6 +199,5 @@ void finalizeMoeRoutingKernelLauncher(
auto* const kernel = func_map[check_finished];
kernel<<<blocks, threads, 0, stream>>>(
expanded_permuted_rows, reduced_unpermuted_output, scales,
expanded_source_row_to_expanded_dest_row, expert_for_source_row, cols, k,
num_valid_ptr);
expanded_source_row_to_expanded_dest_row, cols, k, num_valid_ptr);
}

View File

@ -190,8 +190,8 @@ __launch_bounds__(TPB) __global__ void moeTopK(
2) This implementation assumes k is small, but will work for any k.
*/
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG, typename IndType>
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG, int WARP_SIZE_PARAM, typename IndType>
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
void topkGatingSoftmax(const float* input, const bool* finished, float* output, const int num_rows, IndType* indices,
int* source_rows, const int k, const int start_expert, const int end_expert)
{
@ -209,12 +209,12 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
// Restrictions based on previous section.
static_assert(VPT % ELTS_PER_LDG == 0, "The elements per thread must be a multiple of the elements per ldg");
static_assert(WARP_SIZE % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
static_assert(WARP_SIZE_PARAM % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
static_assert(THREADS_PER_ROW == (THREADS_PER_ROW & -THREADS_PER_ROW), "THREADS_PER_ROW must be power of 2");
static_assert(THREADS_PER_ROW <= WARP_SIZE, "THREADS_PER_ROW can be at most warp size");
static_assert(THREADS_PER_ROW <= WARP_SIZE_PARAM, "THREADS_PER_ROW can be at most warp size");
// We have NUM_EXPERTS elements per row. We specialize for small #experts
static constexpr int ELTS_PER_WARP = WARP_SIZE * VPT;
static constexpr int ELTS_PER_WARP = WARP_SIZE_PARAM * VPT;
static constexpr int ROWS_PER_WARP = ELTS_PER_WARP / ELTS_PER_ROW;
static constexpr int ROWS_PER_CTA = WARPS_PER_CTA * ROWS_PER_WARP;
@ -393,41 +393,51 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
namespace detail
{
// Constructs some constants needed to partition the work across threads at compile time.
template <int EXPERTS, int BYTES_PER_LDG>
template <int EXPERTS, int BYTES_PER_LDG, int WARP_SIZE_PARAM>
struct TopkConstants
{
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE) == 0, "");
static constexpr int VECs_PER_THREAD = MAX(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE));
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0, "");
static constexpr int VECs_PER_THREAD = MAX(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM));
static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
static constexpr int THREADS_PER_ROW = EXPERTS / VPT;
static constexpr int ROWS_PER_WARP = WARP_SIZE / THREADS_PER_ROW;
static const int ROWS_PER_WARP = WARP_SIZE_PARAM / THREADS_PER_ROW;
};
} // namespace detail
template <int EXPERTS, int WARPS_PER_TB, typename IndType>
template <int EXPERTS, int WARPS_PER_TB, int WARP_SIZE_PARAM, typename IndType>
void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, float* output, IndType* indices,
int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, cudaStream_t stream)
{
static constexpr std::size_t MAX_BYTES_PER_LDG = 16;
static constexpr int BYTES_PER_LDG = MIN(MAX_BYTES_PER_LDG, sizeof(float) * EXPERTS);
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG>;
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
static constexpr int VPT = Constants::VPT;
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
dim3 block_dim(WARP_SIZE, WARPS_PER_TB);
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG><<<num_blocks, block_dim, 0, stream>>>(
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG, WARP_SIZE_PARAM><<<num_blocks, block_dim, 0, stream>>>(
input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert);
}
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB) \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB>( \
gating_output, nullptr, topk_weights, topk_indices, \
token_expert_indices, num_tokens, topk, 0, num_experts, \
stream);
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB) \
switch (warpSize) { \
case 32: \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 32>( \
gating_output, nullptr, topk_weights, topk_indices, \
token_expert_indices, num_tokens, topk, 0, num_experts, stream); \
break; \
case 64: \
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 64>( \
gating_output, nullptr, topk_weights, topk_indices, \
token_expert_indices, num_tokens, topk, 0, num_experts, stream); \
break; \
default: \
TORCH_CHECK(false, "Unsupported warp size: ", warpSize); \
}
template <typename IndType>
void topkGatingSoftmaxKernelLauncher(
@ -441,6 +451,7 @@ void topkGatingSoftmaxKernelLauncher(
const int topk,
cudaStream_t stream) {
static constexpr int WARPS_PER_TB = 4;
auto warpSize = WARP_SIZE;
switch (num_experts) {
case 1:
LAUNCH_SOFTMAX(1, WARPS_PER_TB);

View File

@ -56,18 +56,17 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
" -> Tensor");
m.def(
"moe_permute(Tensor input, Tensor topk_weight, Tensor! topk_ids,"
"moe_permute(Tensor input, Tensor topk_ids,"
"Tensor token_expert_indices, Tensor? expert_map, int n_expert,"
"int n_local_expert,"
"int topk, int? align_block_size,Tensor! permuted_input, Tensor! "
"expert_first_token_offset, Tensor! src_row_id2dst_row_id_map, Tensor! "
"m_indices)->()");
"expert_first_token_offset, Tensor! inv_permuted_idx, Tensor! "
"permuted_idx, Tensor! m_indices)->()");
m.def(
"moe_unpermute(Tensor permuted_hidden_states, Tensor topk_weights,"
"Tensor topk_ids,Tensor src_row_id2dst_row_id_map, Tensor "
"expert_first_token_offset, int n_expert, int n_local_expert,int "
"topk, Tensor! hidden_states)->()");
"Tensor inv_permuted_idx, Tensor? expert_first_token_offset, "
"int topk, Tensor! hidden_states)->()");
m.def("moe_permute_unpermute_supported() -> bool");
m.impl("moe_permute_unpermute_supported", &moe_permute_unpermute_supported);

View File

@ -287,6 +287,16 @@ void scaled_fp4_experts_quant(
torch::Tensor const& input, torch::Tensor const& input_global_scale,
torch::Tensor const& input_offset_by_experts,
torch::Tensor const& output_scale_offset_by_experts);
void per_token_group_quant_fp8(const torch::Tensor& input,
torch::Tensor& output_q, torch::Tensor& output_s,
int64_t group_size, double eps, double fp8_min,
double fp8_max, bool scale_ue8m0);
void per_token_group_quant_int8(const torch::Tensor& input,
torch::Tensor& output_q,
torch::Tensor& output_s, int64_t group_size,
double eps, double int8_min, double int8_max);
#endif
void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,

View File

@ -4,7 +4,7 @@
#include <cmath>
#include "core/math.hpp"
#include "cuda_compat.h"
#include "../cuda_compat.h"
#include "dispatch_utils.h"
#include "quantization/fp8/common.cuh"

View File

@ -1,6 +1,8 @@
#include <ATen/cuda/CUDAContext.h>
#include <torch/all.h>
#include "../per_token_group_quant_8bit.h"
#include <cmath>
#include "../../dispatch_utils.h"
@ -336,3 +338,11 @@ void dynamic_scaled_int8_quant(
}
});
}
void per_token_group_quant_int8(const torch::Tensor& input,
torch::Tensor& output_q,
torch::Tensor& output_s, int64_t group_size,
double eps, double int8_min, double int8_max) {
per_token_group_quant_8bit(input, output_q, output_s, group_size, eps,
int8_min, int8_max);
}

View File

@ -18,28 +18,34 @@ using ProblemShape =
cutlass::gemm::GroupProblemShape<cute::Shape<int, int, int>>;
using ElementAccumulator = float;
using ArchTag = cutlass::arch::Sm90;
using OperatorClass = cutlass::arch::OpClassTensorOp;
using LayoutA = cutlass::layout::RowMajor;
using LayoutA_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutA>::type;
using LayoutB = cutlass::layout::ColumnMajor;
using LayoutC = cutlass::layout::RowMajor;
using LayoutB_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutB>::type;
using LayoutD = cutlass::layout::RowMajor;
using LayoutD_Transpose =
typename cutlass::layout::LayoutTranspose<LayoutD>::type;
using LayoutC = LayoutD;
using LayoutC_Transpose = LayoutD_Transpose;
template <typename ElementAB_, typename ElementC_,
template <typename ElementAB_, typename ElementC_, typename ArchTag_,
template <typename, typename, typename> typename Epilogue_,
typename TileShape, typename ClusterShape, typename KernelSchedule,
typename EpilogueSchedule>
typename EpilogueSchedule, bool swap_ab_ = false>
struct cutlass_3x_group_gemm {
static constexpr bool swap_ab = swap_ab_;
using ElementAB = ElementAB_;
using ElementC = void;
using ElementD = ElementC_;
using ElementAccumulator = float;
using ArchTag = ArchTag_;
using Epilogue = Epilogue_<ElementAccumulator, ElementD, TileShape>;
using StrideC =
cute::remove_pointer_t<cute::Stride<int64_t, cute::Int<1>, cute::Int<0>>>;
static constexpr int AlignmentAB =
128 / cutlass::sizeof_bits<ElementAB>::value;
static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementD>::value;
@ -50,21 +56,28 @@ struct cutlass_3x_group_gemm {
typename cutlass::epilogue::collective::CollectiveBuilder<
ArchTag, OperatorClass, TileShape, ClusterShape,
cutlass::epilogue::collective::EpilogueTileAuto, ElementAccumulator,
ElementAccumulator, ElementC, LayoutC*, AlignmentC, ElementD,
LayoutC*, AlignmentC, EpilogueSchedule, EVTCompute>::CollectiveOp;
ElementAccumulator, ElementC,
conditional_t<swap_ab, LayoutC_Transpose*, LayoutC*>, AlignmentC,
ElementD, conditional_t<swap_ab, LayoutD_Transpose*, LayoutD*>,
AlignmentC, EpilogueSchedule, EVTCompute>::CollectiveOp;
static constexpr size_t CEStorageSize =
sizeof(typename CollectiveEpilogue::SharedStorage);
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
static_cast<int>(CEStorageSize)>;
using CollectiveMainloop =
using CollectiveMainloop = conditional_t<
swap_ab,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag, OperatorClass, ElementAB, LayoutB_Transpose*, AlignmentAB,
ElementAB, LayoutA_Transpose*, AlignmentAB, ElementAccumulator,
TileShape, ClusterShape, Stages, KernelSchedule>::CollectiveOp,
typename cutlass::gemm::collective::CollectiveBuilder<
ArchTag, OperatorClass, ElementAB, LayoutA*, AlignmentAB, ElementAB,
LayoutB*, AlignmentAB, ElementAccumulator, TileShape, ClusterShape,
Stages, KernelSchedule>::CollectiveOp;
Stages, KernelSchedule>::CollectiveOp>;
using KernelType = enable_sm90_only<cutlass::gemm::kernel::GemmUniversal<
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
ProblemShape, CollectiveMainloop, CollectiveEpilogue>>;
struct GemmKernel : public KernelType {};
@ -78,12 +91,12 @@ void cutlass_group_gemm_caller(
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
static constexpr bool swap_ab = Gemm::swap_ab;
using ElementAB = typename Gemm::ElementAB;
using ElementD = typename Gemm::ElementD;
int num_experts = static_cast<int>(expert_offsets.size(0));
int k_size = a_tensors.size(1);
int n_size = out_tensors.size(1);
auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());
@ -110,26 +123,47 @@ void cutlass_group_gemm_caller(
problem_sizes.data_ptr());
ProblemShape prob_shape{num_experts, problem_sizes_as_shapes, nullptr};
typename GemmKernel::MainloopArguments mainloop_args{
static_cast<const ElementAB**>(a_ptrs.data_ptr()),
static_cast<StrideA*>(a_strides.data_ptr()),
static_cast<const ElementAB**>(b_ptrs.data_ptr()),
static_cast<StrideB*>(b_strides.data_ptr())};
typename GemmKernel::MainloopArguments mainloop_args;
if constexpr (swap_ab) {
mainloop_args = typename GemmKernel::MainloopArguments{
static_cast<const ElementAB**>(b_ptrs.data_ptr()),
static_cast<StrideB*>(b_strides.data_ptr()),
static_cast<const ElementAB**>(a_ptrs.data_ptr()),
static_cast<StrideA*>(a_strides.data_ptr())};
} else {
mainloop_args = typename GemmKernel::MainloopArguments{
static_cast<const ElementAB**>(a_ptrs.data_ptr()),
static_cast<StrideA*>(a_strides.data_ptr()),
static_cast<const ElementAB**>(b_ptrs.data_ptr()),
static_cast<StrideB*>(b_strides.data_ptr())};
}
// Currently, we are only able to do broadcast on either all or none a_scales
// and on either all or none b_scales
typename GemmKernel::EpilogueArguments epilogue_args{
Gemm::Epilogue::prepare_args(
static_cast<const ElementAccumulator**>(a_scales_ptrs.data_ptr()),
static_cast<const ElementAccumulator**>(b_scales_ptrs.data_ptr()),
per_act_token, per_out_ch),
swap_ab ? static_cast<const ElementAccumulator**>(
b_scales_ptrs.data_ptr())
: static_cast<const ElementAccumulator**>(
a_scales_ptrs.data_ptr()),
swap_ab ? static_cast<const ElementAccumulator**>(
a_scales_ptrs.data_ptr())
: static_cast<const ElementAccumulator**>(
b_scales_ptrs.data_ptr()),
swap_ab ? per_out_ch : per_act_token,
swap_ab ? per_act_token : per_out_ch),
nullptr, static_cast<StrideC*>(c_strides.data_ptr()),
static_cast<ElementD**>(out_ptrs.data_ptr()),
static_cast<StrideC*>(c_strides.data_ptr())};
int device_id = a_tensors.device().index();
static const cutlass::KernelHardwareInfo hw_info{
device_id, cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
device_id)};
typename GemmKernel::Arguments args{
cutlass::gemm::GemmUniversalMode::kGrouped, prob_shape, mainloop_args,
epilogue_args};
epilogue_args, hw_info};
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
GemmOp gemm_op;

View File

@ -0,0 +1,140 @@
#include <cudaTypedefs.h>
#include <c10/cuda/CUDAGuard.h>
#include <torch/all.h>
#include "cutlass/cutlass.h"
#include "grouped_mm_c3x.cuh"
using namespace cute;
namespace {
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_default {
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmSm100;
using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
using TileShape = cute::Shape<cute::_128, cute::_256, cute::_128>;
using ClusterShape = cute::Shape<cute::_1, cute::_1, cute::_1>;
using ArchTag = cutlass::arch::Sm100;
using Cutlass3xGemm =
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_M64 {
// M in [1,64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmSm100;
using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
using TileShape = cute::Shape<cute::_128, cute::_16, cute::_128>;
using ClusterShape = cute::Shape<cute::_1, cute::_1, cute::_1>;
using ArchTag = cutlass::arch::Sm100;
using Cutlass3xGemm =
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule,
true>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm100_fp8_config_N8192 {
// N in [8192, inf)
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelPtrArrayTmaWarpSpecialized2SmSm100;
using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized2Sm;
using TileShape = cute::Shape<cute::_128, cute::_256, cute::_128>;
using ClusterShape = cute::Shape<cute::_2, cute::_1, cute::_1>;
using ArchTag = cutlass::arch::Sm100;
using Cutlass3xGemm =
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType>
void run_cutlass_moe_mm_sm100(
torch::Tensor& out_tensors, torch::Tensor const& a_tensors,
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
TORCH_CHECK(a_tensors.size(0) > 0, "No input A tensors provided.");
TORCH_CHECK(b_tensors.size(0) > 0, "No input B tensors provided.");
TORCH_CHECK(out_tensors.size(0) > 0, "No output tensors provided.");
TORCH_CHECK(a_tensors.dtype() == torch::kFloat8_e4m3fn,
"A tensors must be of type float8_e4m3fn.");
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn,
"B tensors must be of type float8_e4m3fn.");
using Cutlass3xGemmDefault = typename sm100_fp8_config_default<
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
using Cutlass3xGemmN8192 = typename sm100_fp8_config_N8192<
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
using Cutlass3xGemmM64 = typename sm100_fp8_config_M64<
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
uint32_t const m = a_tensors.size(0);
uint32_t const n = out_tensors.size(1);
if (m <= 64) {
cutlass_group_gemm_caller<Cutlass3xGemmM64>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else if (n >= 8192) {
cutlass_group_gemm_caller<Cutlass3xGemmN8192>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else {
cutlass_group_gemm_caller<Cutlass3xGemmDefault>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
}
}
} // namespace
void dispatch_moe_mm_sm100(
torch::Tensor& out_tensors, torch::Tensor const& a_tensors,
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
if (out_tensors.dtype() == torch::kBFloat16) {
run_cutlass_moe_mm_sm100<cutlass::float_e4m3_t, cutlass::bfloat16_t>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else {
run_cutlass_moe_mm_sm100<cutlass::float_e4m3_t, cutlass::half_t>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
}
}
void cutlass_moe_mm_sm100(
torch::Tensor& out_tensors, torch::Tensor const& a_tensors,
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
dispatch_moe_mm_sm100(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
expert_offsets, problem_sizes, a_strides, b_strides,
c_strides, per_act_token, per_out_ch);
}

View File

@ -21,27 +21,49 @@ struct sm90_fp8_config_default {
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
using TileShape = cute::Shape<cute::_64, cute::_256, cute::_128>;
using ClusterShape = cute::Shape<cute::_1, cute::_2, cute::_1>;
using ArchTag = cutlass::arch::Sm90;
using Cutlass3xGemm =
cutlass_3x_group_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M16 {
// M in [1, 16]
struct sm90_fp8_config_M4 {
// M in [1, 4]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule =
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
using TileShape = cute::Shape<cute::_64, cute::_64, cute::_128>;
using ClusterShape = cute::Shape<cute::_1, cute::_4, cute::_1>;
using TileShape = cute::Shape<cute::_128, cute::_16, cute::_128>;
using ClusterShape = cute::Shape<cute::_1, cute::_1, cute::_1>;
using ArchTag = cutlass::arch::Sm90;
using Cutlass3xGemm =
cutlass_3x_group_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule,
true>;
};
template <typename InType, typename OutType,
template <typename, typename, typename> typename Epilogue>
struct sm90_fp8_config_M64 {
// M in (4, 64]
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
using KernelSchedule =
cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpongFP8FastAccum;
using EpilogueSchedule =
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
using TileShape = cute::Shape<cute::_128, cute::_16, cute::_256>;
using ClusterShape = cute::Shape<cute::_2, cute::_1, cute::_1>;
using ArchTag = cutlass::arch::Sm90;
using Cutlass3xGemm =
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule,
true>;
};
template <typename InType, typename OutType,
@ -55,10 +77,11 @@ struct sm90_fp8_config_K8192 {
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
using TileShape = cute::Shape<cute::_128, cute::_128, cute::_128>;
using ClusterShape = cute::Shape<cute::_1, cute::_8, cute::_1>;
using ArchTag = cutlass::arch::Sm90;
using Cutlass3xGemm =
cutlass_3x_group_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType,
@ -72,10 +95,11 @@ struct sm90_fp8_config_N8192 {
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
using TileShape = cute::Shape<cute::_64, cute::_128, cute::_256>;
using ClusterShape = cute::Shape<cute::_1, cute::_8, cute::_1>;
using ArchTag = cutlass::arch::Sm90;
using Cutlass3xGemm =
cutlass_3x_group_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
KernelSchedule, EpilogueSchedule>;
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
ClusterShape, KernelSchedule, EpilogueSchedule>;
};
template <typename InType, typename OutType>
@ -95,14 +119,13 @@ void run_cutlass_moe_mm_sm90(
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn,
"B tensors must be of type float8_e4m3fn.");
TORCH_CHECK(a_tensors.dtype() == torch::kFloat8_e4m3fn);
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn);
using Cutlass3xGemmN8192 = typename sm90_fp8_config_N8192<
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
using Cutlass3xGemmK8192 = typename sm90_fp8_config_K8192<
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
using Cutlass3xGemmM16 = typename sm90_fp8_config_M16<
using Cutlass3xGemmM4 = typename sm90_fp8_config_M4<
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
using Cutlass3xGemmM64 = typename sm90_fp8_config_M64<
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
using Cutlass3xGemmDefault = typename sm90_fp8_config_default<
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
@ -111,7 +134,18 @@ void run_cutlass_moe_mm_sm90(
uint32_t const n = out_tensors.size(1);
uint32_t const k = a_tensors.size(1);
if (n >= 8192) {
// Use swap_ab for M <= 64 by default to reduce padding
if (m <= 4) {
cutlass_group_gemm_caller<Cutlass3xGemmM4>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else if (m <= 64) {
cutlass_group_gemm_caller<Cutlass3xGemmM64>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else if (n >= 8192) {
cutlass_group_gemm_caller<Cutlass3xGemmN8192>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
@ -121,11 +155,6 @@ void run_cutlass_moe_mm_sm90(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else if (m <= 16) {
cutlass_group_gemm_caller<Cutlass3xGemmM16>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
per_out_ch);
} else {
cutlass_group_gemm_caller<Cutlass3xGemmDefault>(
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,

View File

@ -6,7 +6,10 @@
#include <iostream>
constexpr uint64_t THREADS_PER_EXPERT = 512;
// threshold must match the dispatch logic in run_cutlass_moe_mm_sm90()
constexpr int SWAP_AB_THRESHOLD = 64;
template <bool SWAP_AB>
__global__ void compute_problem_sizes(const int32_t* __restrict__ topk_ids,
int32_t* problem_sizes1,
int32_t* problem_sizes2,
@ -24,40 +27,51 @@ __global__ void compute_problem_sizes(const int32_t* __restrict__ topk_ids,
if (threadIdx.x == 0) {
int final_occurrences = atomic_buffer[expert_id];
problem_sizes1[expert_id * 3] = final_occurrences;
problem_sizes1[expert_id * 3 + 1] = 2 * n;
problem_sizes1[expert_id * 3 + 2] = k;
problem_sizes2[expert_id * 3] = final_occurrences;
problem_sizes2[expert_id * 3 + 1] = k;
problem_sizes2[expert_id * 3 + 2] = n;
if constexpr (!SWAP_AB) {
problem_sizes1[expert_id * 3] = final_occurrences;
problem_sizes1[expert_id * 3 + 1] = 2 * n;
problem_sizes1[expert_id * 3 + 2] = k;
problem_sizes2[expert_id * 3] = final_occurrences;
problem_sizes2[expert_id * 3 + 1] = k;
problem_sizes2[expert_id * 3 + 2] = n;
} else {
problem_sizes1[expert_id * 3] = 2 * n;
problem_sizes1[expert_id * 3 + 1] = final_occurrences;
problem_sizes1[expert_id * 3 + 2] = k;
problem_sizes2[expert_id * 3] = k;
problem_sizes2[expert_id * 3 + 1] = final_occurrences;
problem_sizes2[expert_id * 3 + 2] = n;
}
}
}
__global__ void compute_expert_offsets(
const int32_t* __restrict__ problem_sizes1, int32_t* expert_offsets,
int32_t* atomic_buffer, const int num_experts) {
int32_t* atomic_buffer, const int num_experts, const bool swap_ab) {
int32_t tot_offset = 0;
expert_offsets[0] = 0;
for (int i = 0; i < num_experts; ++i) {
atomic_buffer[i] = tot_offset;
tot_offset += problem_sizes1[i * 3];
tot_offset += swap_ab ? problem_sizes1[i * 3 + 1] : problem_sizes1[i * 3];
expert_offsets[i + 1] = tot_offset;
}
}
__global__ void compute_expert_blockscale_offsets(
const int32_t* __restrict__ problem_sizes1, int32_t* expert_offsets,
int32_t* blockscale_offsets, int32_t* atomic_buffer,
const int num_experts) {
int32_t* blockscale_offsets, int32_t* atomic_buffer, const int num_experts,
const bool swap_ab) {
int32_t tot_offset = 0;
int32_t tot_offset_round = 0;
expert_offsets[0] = 0;
blockscale_offsets[0] = 0;
for (int i = 0; i < num_experts; ++i) {
int32_t cur_offset =
swap_ab ? problem_sizes1[i * 3 + 1] : problem_sizes1[i * 3];
atomic_buffer[i] = tot_offset;
tot_offset += problem_sizes1[i * 3];
tot_offset += cur_offset;
expert_offsets[i + 1] = tot_offset;
tot_offset_round += (problem_sizes1[i * 3] + (128 - 1)) / 128 * 128;
tot_offset_round += (cur_offset + (128 - 1)) / 128 * 128;
blockscale_offsets[i + 1] = tot_offset_round;
}
}
@ -102,22 +116,41 @@ void get_cutlass_moe_mm_data_caller(
torch::Tensor atomic_buffer = torch::zeros(num_experts, options_int32);
int num_threads = min(THREADS_PER_EXPERT, topk_ids.numel());
compute_problem_sizes<<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n, k);
// Swap-AB should be disabled for FP4 path
bool may_swap_ab = (!blockscale_offsets.has_value()) &&
(topk_ids.numel() <= SWAP_AB_THRESHOLD);
if (may_swap_ab) {
compute_problem_sizes<true><<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n,
k);
} else {
compute_problem_sizes<false><<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
static_cast<int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n,
k);
}
if (blockscale_offsets.has_value()) {
// fp4 path
compute_expert_blockscale_offsets<<<1, 1, 0, stream>>>(
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(blockscale_offsets.value().data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts,
may_swap_ab);
} else {
compute_expert_offsets<<<1, 1, 0, stream>>>(
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
static_cast<int32_t*>(expert_offsets.data_ptr()),
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts,
may_swap_ab);
}
compute_arg_sorts<<<num_experts, num_threads, 0, stream>>>(
static_cast<const int32_t*>(topk_ids.data_ptr()),
@ -160,4 +193,4 @@ void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
static_cast<int32_t*>(problem_sizes2.data_ptr()),
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
k);
}
}

View File

@ -41,6 +41,16 @@ void cutlass_moe_mm_sm90(
#endif
#if defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100
void cutlass_moe_mm_sm100(
torch::Tensor& out_tensors, torch::Tensor const& a_tensors,
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch);
#endif
#if defined ENABLE_SCALED_MM_SM120 && ENABLE_SCALED_MM_SM120
void cutlass_scaled_mm_sm120(torch::Tensor& c, torch::Tensor const& a,
torch::Tensor const& b,
@ -130,10 +140,10 @@ bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability) {
// and at least SM90 (Hopper)
#if defined CUDA_VERSION
if (cuda_device_capability >= 90 && cuda_device_capability < 100) {
return CUDA_VERSION >= 12000;
} else if (cuda_device_capability >= 100) {
if (cuda_device_capability >= 100) {
return CUDA_VERSION >= 12080;
} else if (cuda_device_capability >= 90) {
return CUDA_VERSION >= 12000;
}
#endif
@ -141,11 +151,14 @@ bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability) {
}
bool cutlass_group_gemm_supported(int64_t cuda_device_capability) {
// CUTLASS grouped FP8 kernels need at least CUDA 12.3
// and SM90 (Hopper)
// CUTLASS grouped FP8 kernels need at least CUDA 12.3 and SM90 (Hopper)
// or CUDA 12.8 and SM100 (Blackwell)
#if defined CUDA_VERSION
if (cuda_device_capability == 90) {
if (cuda_device_capability >= 100) {
return CUDA_VERSION >= 12080;
}
if (cuda_device_capability >= 90) {
return CUDA_VERSION >= 12030;
}
#endif
@ -234,16 +247,26 @@ void cutlass_moe_mm(
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
bool per_act_token, bool per_out_ch) {
int32_t version_num = get_sm_version_num();
#if defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100
if (version_num >= 100) {
cutlass_moe_mm_sm100(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
expert_offsets, problem_sizes, a_strides, b_strides,
c_strides, per_act_token, per_out_ch);
return;
}
#endif
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
expert_offsets, problem_sizes, a_strides, b_strides,
c_strides, per_act_token, per_out_ch);
return;
if (version_num >= 90) {
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
expert_offsets, problem_sizes, a_strides, b_strides,
c_strides, per_act_token, per_out_ch);
return;
}
#endif
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"No compiled cutlass_scaled_mm for CUDA device capability: ", version_num,
". Required capability: 90");
". Required capability: 90 or 100");
}
void get_cutlass_moe_mm_data(

View File

@ -88,6 +88,8 @@ void static_scaled_fp8_quant(torch::Tensor& out, // [..., d]
torch::Tensor const& input, // [..., d]
torch::Tensor const& scale) // [1]
{
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
int const block_size = 256;
int const num_tokens = input.numel() / input.size(-1);
int const num_elems = input.numel();
@ -111,6 +113,8 @@ void dynamic_scaled_fp8_quant(torch::Tensor& out, // [..., d]
torch::Tensor const& input, // [..., d]
torch::Tensor& scale) // [1]
{
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(out.is_contiguous());
int const block_size = 256;
int const num_tokens = input.numel() / input.size(-1);
int const num_elems = input.numel();

View File

@ -0,0 +1,217 @@
#include <ATen/cuda/CUDAContext.h>
#include <c10/util/Float8_e4m3fn.h>
#include "../per_token_group_quant_8bit.h"
#include <cmath>
#include <cuda_fp16.h>
#include <cuda_bf16.h>
#include <torch/all.h>
#include "../vectorization.cuh"
#include "../vectorization_utils.cuh"
#include "../../dispatch_utils.h"
__device__ __forceinline__ float GroupReduceMax(float val, const int tid) {
unsigned mask = 0xffff;
val = fmaxf(val, __shfl_xor_sync(mask, val, 8));
val = fmaxf(val, __shfl_xor_sync(mask, val, 4));
val = fmaxf(val, __shfl_xor_sync(mask, val, 2));
val = fmaxf(val, __shfl_xor_sync(mask, val, 1));
return val;
}
template <typename T, typename DST_DTYPE, bool IS_COLUMN_MAJOR = false,
bool SCALE_UE8M0 = false, typename scale_packed_t = float>
__global__ void per_token_group_quant_8bit_kernel(
const T* __restrict__ input, void* __restrict__ output_q,
scale_packed_t* __restrict__ output_s, const int group_size,
const int num_groups, const int groups_per_block, const float eps,
const float min_8bit, const float max_8bit, const int scale_num_rows = 0,
const int scale_stride = 0) {
const int threads_per_group = 16;
const int64_t local_group_id = threadIdx.x / threads_per_group;
const int lane_id = threadIdx.x % threads_per_group;
const int64_t block_group_id = blockIdx.x * groups_per_block;
const int64_t global_group_id = block_group_id + local_group_id;
const int64_t block_group_offset = global_group_id * group_size;
float local_absmax = eps;
using scale_element_t = float;
static_assert(sizeof(scale_packed_t) % sizeof(scale_element_t) == 0);
const T* group_input = input + block_group_offset;
DST_DTYPE* group_output =
static_cast<DST_DTYPE*>(output_q) + block_group_offset;
scale_element_t* scale_output;
if constexpr (IS_COLUMN_MAJOR) {
const int num_elems_per_pack =
static_cast<int>(sizeof(scale_packed_t) / sizeof(scale_element_t));
const int scale_num_rows_element = scale_num_rows * num_elems_per_pack;
const int row_idx = global_group_id / scale_num_rows_element;
const int col_idx_raw = global_group_id % scale_num_rows_element;
const int col_idx = col_idx_raw / num_elems_per_pack;
const int pack_idx = col_idx_raw % num_elems_per_pack;
scale_output = reinterpret_cast<scale_element_t*>(output_s) +
(col_idx * scale_stride * num_elems_per_pack +
row_idx * num_elems_per_pack + pack_idx);
} else {
scale_output = output_s + global_group_id;
}
// shared memory to cache each group's data to avoid double DRAM reads.
extern __shared__ __align__(16) char smem_raw[];
T* smem = reinterpret_cast<T*>(smem_raw);
T* smem_group = smem + local_group_id * group_size;
constexpr int vec_size = 16 / sizeof(T);
using vec_t = vllm::vec_n_t<T, vec_size>;
// copy global -> shared & compute absmax
auto scalar_op_cache = [&] __device__(T & dst, const T& src) {
float abs_v = fabsf(static_cast<float>(src));
local_absmax = fmaxf(local_absmax, abs_v);
dst = src;
};
vllm::vectorize_with_alignment<vec_size>(
group_input, // in
smem_group, // out (shared)
group_size, // elements per group
lane_id, // thread id
threads_per_group, // stride in group
scalar_op_cache); // scalar handler
local_absmax = GroupReduceMax(local_absmax, lane_id);
float y_s = local_absmax / max_8bit;
if constexpr (SCALE_UE8M0) {
y_s = exp2f(ceilf(log2f(fmaxf(fabsf(y_s), 1e-10f))));
}
scale_element_t y_s_quant = y_s;
if (lane_id == 0) {
*scale_output = y_s_quant;
}
__syncthreads();
// quantize shared -> global 8-bit
auto scalar_op_quant = [&] __device__(DST_DTYPE & dst, const T& src) {
float q = fminf(fmaxf(static_cast<float>(src) / y_s, min_8bit), max_8bit);
dst = DST_DTYPE(q);
};
vllm::vectorize_with_alignment<vec_size>(
smem_group, // in (shared)
group_output, // out (global quant tensor)
group_size, // elements
lane_id, // tid
threads_per_group, // stride
scalar_op_quant); // scalar handler
}
void per_token_group_quant_8bit(const torch::Tensor& input,
torch::Tensor& output_q,
torch::Tensor& output_s, int64_t group_size,
double eps, double min_8bit, double max_8bit,
bool scale_ue8m0) {
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(output_q.is_contiguous());
const int num_groups = input.numel() / group_size;
TORCH_CHECK(input.numel() % group_size == 0);
TORCH_CHECK(output_s.dim() == 2);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
constexpr int THREADS_PER_GROUP = 16;
int groups_per_block = 1;
if (num_groups % 16 == 0) {
groups_per_block = 16;
} else if (num_groups % 8 == 0) {
groups_per_block = 8;
} else if (num_groups % 4 == 0) {
groups_per_block = 4;
} else if (num_groups % 2 == 0) {
groups_per_block = 2;
}
auto dst_type = output_q.scalar_type();
const int num_blocks = num_groups / groups_per_block;
const int num_threads = groups_per_block * THREADS_PER_GROUP;
const bool is_column_major = output_s.stride(0) < output_s.stride(1);
const int scale_num_rows = output_s.size(1);
const int scale_stride = output_s.stride(1);
#define LAUNCH_KERNEL(T, DST_DTYPE) \
do { \
dim3 grid(num_blocks); \
dim3 block(num_threads); \
size_t smem_bytes = \
static_cast<size_t>(groups_per_block) * group_size * sizeof(T); \
if (is_column_major) { \
if (scale_ue8m0) { \
per_token_group_quant_8bit_kernel<T, DST_DTYPE, true, true> \
<<<grid, block, smem_bytes, stream>>>( \
static_cast<T*>(input.data_ptr()), output_q.data_ptr(), \
static_cast<float*>(output_s.data_ptr()), group_size, \
num_groups, groups_per_block, (float)eps, (float)min_8bit, \
(float)max_8bit, scale_num_rows, scale_stride); \
} else { \
per_token_group_quant_8bit_kernel<T, DST_DTYPE, true, false> \
<<<grid, block, smem_bytes, stream>>>( \
static_cast<T*>(input.data_ptr()), output_q.data_ptr(), \
static_cast<float*>(output_s.data_ptr()), group_size, \
num_groups, groups_per_block, (float)eps, (float)min_8bit, \
(float)max_8bit, scale_num_rows, scale_stride); \
} \
} else { \
if (scale_ue8m0) { \
per_token_group_quant_8bit_kernel<T, DST_DTYPE, false, true> \
<<<grid, block, smem_bytes, stream>>>( \
static_cast<T*>(input.data_ptr()), output_q.data_ptr(), \
static_cast<float*>(output_s.data_ptr()), group_size, \
num_groups, groups_per_block, (float)eps, (float)min_8bit, \
(float)max_8bit); \
} else { \
per_token_group_quant_8bit_kernel<T, DST_DTYPE, false, false> \
<<<grid, block, smem_bytes, stream>>>( \
static_cast<T*>(input.data_ptr()), output_q.data_ptr(), \
static_cast<float*>(output_s.data_ptr()), group_size, \
num_groups, groups_per_block, (float)eps, (float)min_8bit, \
(float)max_8bit); \
} \
} \
} while (0)
VLLM_DISPATCH_FLOATING_TYPES(
input.scalar_type(), "per_token_group_quant_8bit", ([&] {
if (dst_type == at::ScalarType::Float8_e4m3fn) {
LAUNCH_KERNEL(scalar_t, c10::Float8_e4m3fn);
} else if (dst_type == at::ScalarType::Char) {
LAUNCH_KERNEL(scalar_t, int8_t);
}
}));
#undef LAUNCH_KERNEL
}
void per_token_group_quant_fp8(const torch::Tensor& input,
torch::Tensor& output_q, torch::Tensor& output_s,
int64_t group_size, double eps, double fp8_min,
double fp8_max, bool scale_ue8m0) {
per_token_group_quant_8bit(input, output_q, output_s, group_size, eps,
fp8_min, fp8_max, scale_ue8m0);
}

View File

@ -4,7 +4,7 @@
#include <torch/all.h>
#include <c10/cuda/CUDAGuard.h>
#include "cuda_compat.h"
#include "../../cuda_compat.h"
#include "dispatch_utils.h"
#include "ggml-common.h"

View File

@ -187,8 +187,12 @@ struct PrepackedLayoutBTemplate {
CUTE_HOST_DEVICE static constexpr auto TVbNbKL_to_offset_copy(
Shape_NKL shape_mkl) {
auto layout = TVbNbKL_to_offset(shape_mkl);
return make_layout(coalesce(get<0>(layout)), get<1>(layout),
get<2>(layout));
// for 4-bit elements, having >= 64 values per column
// allows TMA to load full 32-byte sectors
auto inner_layout =
make_layout(make_shape(_256{}, size<0>(layout) / _256{}));
return make_layout(inner_layout, get<1>(layout), get<2>(layout));
}
// ((BlockN, BlockK), (BlocksN, BlocksK), L) -> (storage_idx)

View File

@ -0,0 +1,10 @@
#pragma once
#include <torch/all.h>
// TODO(wentao): refactor the folder to 8bit, then includes fp8 and int8 folders
// 8-bit per-token-group quantization helper used by both FP8 and INT8
void per_token_group_quant_8bit(const torch::Tensor& input,
torch::Tensor& output_q,
torch::Tensor& output_s, int64_t group_size,
double eps, double min_8bit, double max_8bit,
bool scale_ue8m0 = false);

View File

@ -19,7 +19,7 @@
#include <c10/cuda/CUDAGuard.h>
#include <hip/hip_fp8.h>
#include <hip/hip_bf16.h>
#include "cuda_compat.h"
#include "../cuda_compat.h"
#include <algorithm>
#include "../attention/dtype_fp8.cuh"

View File

@ -9,7 +9,7 @@
#include <stdexcept>
#include <algorithm>
#include "cuda_compat.h"
#include "../cuda_compat.h"
#include "dispatch_utils.h"
#include "quantization/fp8/common.cuh"

View File

@ -20,13 +20,17 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
// vLLM custom ops
//
// The default behavior in PyTorch 2.6 is "requires_contiguous", so we need
// The default behavior in PyTorch 2.6 was changed to "requires_contiguous",
// so we need
// to override this for many GEMMs with the following tag. Otherwise,
// torch.compile will force all input tensors to be contiguous(), which
// will break many custom ops that require column-major weight matrices.
// TODO: remove this for PyTorch 2.8, when the default is planned to switch
// to match exact eager-mode strides.
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
// This was a bug and PyTorch 2.7 has since fixed this.
#if TORCH_VERSION_MAJOR == 2 && TORCH_VERSION_MINOR == 6
#define stride_tag at::Tag::needs_fixed_stride_order
#else
#define stride_tag
#endif
ops.def("weak_ref_tensor(Tensor input) -> Tensor");
ops.impl("weak_ref_tensor", torch::kCUDA, &weak_ref_tensor);
@ -611,6 +615,23 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd);
#ifndef USE_ROCM
// Compute per-token-group FP8 quantized tensor and scaling factor.
ops.def(
"per_token_group_fp8_quant(Tensor input, Tensor! output_q, Tensor! "
"output_s, "
"int group_size, float eps, float fp8_min, float fp8_max, bool "
"scale_ue8m0) -> ()");
ops.impl("per_token_group_fp8_quant", torch::kCUDA,
&per_token_group_quant_fp8);
// Compute per-token-group INT8 quantized tensor and scaling factor.
ops.def(
"per_token_group_quant_int8(Tensor input, Tensor! output_q, Tensor! "
"output_s, int group_size, float eps, float int8_min, float int8_max) -> "
"()");
ops.impl("per_token_group_quant_int8", torch::kCUDA,
&per_token_group_quant_int8);
// reorder weight for AllSpark Ampere W8A16 Fused Gemm kernel
ops.def(
"rearrange_kn_weight_as_n32k16_order(Tensor b_qweight, Tensor b_scales, "

View File

@ -265,7 +265,7 @@ RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
#################### EXTENSION Build IMAGE ####################
#################### DEV IMAGE ####################
FROM base as dev
FROM base AS dev
ARG PIP_INDEX_URL UV_INDEX_URL
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
@ -276,10 +276,6 @@ ARG PYTORCH_CUDA_INDEX_BASE_URL
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Workaround for #17068
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
COPY requirements/lint.txt requirements/lint.txt
COPY requirements/test.txt requirements/test.txt
COPY requirements/dev.txt requirements/dev.txt
@ -388,48 +384,33 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
# -rw-rw-r-- 1 mgoin mgoin 205M Jun 9 18:03 flashinfer_python-0.2.6.post1-cp39-abi3-linux_x86_64.whl
# $ # upload the wheel to a public location, e.g. https://wheels.vllm.ai/flashinfer/v0.2.6.post1/flashinfer_python-0.2.6.post1-cp39-abi3-linux_x86_64.whl
# Allow specifying a version, Git revision or local .whl file
ARG FLASHINFER_CUDA128_INDEX_URL="https://download.pytorch.org/whl/cu128/flashinfer"
ARG FLASHINFER_CUDA128_WHEEL="flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl"
# Install FlashInfer from source
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
ARG FLASHINFER_GIT_REF="v0.2.8rc1"
# Flag to control whether to use pre-built FlashInfer wheels (set to false to force build from source)
# TODO: Currently disabled because the pre-built wheels are not available for FLASHINFER_GIT_REF
ARG USE_FLASHINFER_PREBUILT_WHEEL=false
ARG FLASHINFER_GIT_REF="v0.2.9rc1"
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
. /etc/environment
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then
# FlashInfer already has a wheel for PyTorch 2.7.0 and CUDA 12.8. This is enough for CI use
if [[ "$CUDA_VERSION" == 12.8* ]] && [[ "$USE_FLASHINFER_PREBUILT_WHEEL" == "true" ]]; then
uv pip install --system ${FLASHINFER_CUDA128_INDEX_URL}/${FLASHINFER_CUDA128_WHEEL}
else
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
fi
echo "🏗️ Building FlashInfer for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
git clone --depth 1 --recursive --shallow-submodules \
--branch ${FLASHINFER_GIT_REF} \
${FLASHINFER_GIT_REPO} flashinfer
# Needed to build AOT kernels
pushd flashinfer
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer.aot
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
uv pip install --system --no-build-isolation .
popd
rm -rf flashinfer
fi \
fi
git clone --depth 1 --recursive --shallow-submodules \
--branch ${FLASHINFER_GIT_REF} \
${FLASHINFER_GIT_REPO} flashinfer
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
if [[ "${CUDA_VERSION}" == 11.* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
else
# CUDA 12.8+ supports 10.0a and 12.0
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
fi
echo "🏗️ Building FlashInfer for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
# Needed to build AOT kernels
pushd flashinfer
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
python3 -m flashinfer.aot
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
uv pip install --system --no-build-isolation .
popd
rm -rf flashinfer
BASH
COPY examples examples
COPY benchmarks benchmarks
@ -467,10 +448,6 @@ ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
ENV UV_HTTP_TIMEOUT=500
ENV UV_INDEX_STRATEGY="unsafe-best-match"
# Workaround for #17068
RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
# install development dependencies (for testing)
RUN --mount=type=cache,target=/root/.cache/uv \
CUDA_MAJOR="${CUDA_VERSION%%.*}"; \
@ -521,10 +498,11 @@ RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --system -r requirements/kv_connectors.txt; \
fi; \
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
BITSANDBYTES_VERSION="0.42.0"; \
else \
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.46.1' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
fi
BITSANDBYTES_VERSION="0.46.1"; \
fi; \
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]
ENV VLLM_USAGE_SOURCE production-docker-image

View File

@ -1,62 +0,0 @@
# This vLLM Dockerfile is used to construct an image that can build and run vLLM on ARM CPU platform.
FROM ubuntu:22.04 AS cpu-test-arm
ENV CCACHE_DIR=/root/.cache/ccache
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
RUN --mount=type=cache,target=/var/cache/apt \
apt-get update -y \
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
# tcmalloc provides better memory allocation efficiency, e.g., holding memory in caches to speed up access of commonly-used objects.
RUN --mount=type=cache,target=/root/.cache/pip \
pip install py-cpuinfo # Use this to gather CPU info and optimize based on ARM Neoverse cores
# Set LD_PRELOAD for tcmalloc on ARM
ENV LD_PRELOAD="/usr/lib/aarch64-linux-gnu/libtcmalloc_minimal.so.4"
RUN echo 'ulimit -c 0' >> ~/.bashrc
WORKDIR /workspace
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements/build.txt,target=requirements/build.txt \
pip install --upgrade pip && \
pip install -r requirements/build.txt
FROM cpu-test-arm AS build
WORKDIR /workspace/vllm
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=bind,src=requirements/common.txt,target=requirements/common.txt \
--mount=type=bind,src=requirements/cpu.txt,target=requirements/cpu.txt \
pip install -v -r requirements/cpu.txt
COPY . .
ARG GIT_REPO_CHECK=0
RUN --mount=type=bind,source=.git,target=.git \
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
# Disabling AVX512 specific optimizations for ARM
ARG VLLM_CPU_DISABLE_AVX512="true"
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
RUN --mount=type=cache,target=/root/.cache/pip \
--mount=type=cache,target=/root/.cache/ccache \
--mount=type=bind,source=.git,target=.git \
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
pip install dist/*.whl && \
rm -rf dist
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,4 +1,11 @@
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
# This vLLM Dockerfile is used to build images that can run vLLM on both x86_64 and arm64 CPU platforms.
#
# Supported platforms:
# - linux/amd64 (x86_64)
# - linux/arm64 (aarch64)
#
# Use the `--platform` option with `docker buildx build` to specify the target architecture, e.g.:
# docker buildx build --platform=linux/arm64 -f docker/Dockerfile.cpu .
#
# Build targets:
# vllm-openai (default): used for serving deployment
@ -53,7 +60,20 @@ RUN --mount=type=cache,target=/root/.cache/uv \
uv pip install --upgrade pip && \
uv pip install -r requirements/cpu.txt
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/opt/venv/lib/libiomp5.so:$LD_PRELOAD"
ARG TARGETARCH
ENV TARGETARCH=${TARGETARCH}
RUN if [ "$TARGETARCH" = "arm64" ]; then \
PRELOAD_PATH="/usr/lib/aarch64-linux-gnu/libtcmalloc_minimal.so.4"; \
else \
PRELOAD_PATH="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/opt/venv/lib/libiomp5.so"; \
fi && \
echo "export LD_PRELOAD=$PRELOAD_PATH" >> ~/.bashrc
# Ensure that the LD_PRELOAD environment variable for export is in effect.
SHELL ["/bin/bash", "-c"]
ENV LD_PRELOAD=${LD_PRELOAD}
RUN echo 'ulimit -c 0' >> ~/.bashrc
@ -95,7 +115,7 @@ WORKDIR /workspace/vllm
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
cp requirements/test.in requirements/cpu-test.in && \
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
sed -i 's/torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
sed -i 's/^torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu

View File

@ -1,21 +0,0 @@
FROM vault.habana.ai/gaudi-docker/1.20.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
COPY ./ /workspace/vllm
WORKDIR /workspace/vllm
RUN pip install -v -r requirements/hpu.txt
ENV no_proxy=localhost,127.0.0.1
ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
RUN VLLM_TARGET_DEVICE=hpu python3 setup.py install
# install development dependencies (for testing)
RUN python3 -m pip install -e tests/vllm_test_utils
WORKDIR /workspace/
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]

View File

@ -1,5 +1,5 @@
ARG NIGHTLY_DATE="20250124"
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
ARG NIGHTLY_DATE="20250724"
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.12_tpuvm_$NIGHTLY_DATE"
FROM $BASE_IMAGE
WORKDIR /workspace/vllm

View File

@ -47,7 +47,7 @@ FROM vllm-base AS vllm-openai
# install additional dependencies for openai api server
RUN --mount=type=cache,target=/root/.cache/pip \
pip install accelerate hf_transfer pytest 'modelscope!=1.15.0'
pip install accelerate hf_transfer pytest pytest_asyncio lm_eval[api] modelscope
ENV VLLM_USAGE_SOURCE production-docker-image \
TRITON_XPU_PROFILE 1

View File

@ -14,7 +14,6 @@ API documentation for vLLM's configuration classes.
- [vllm.config.DeviceConfig][]
- [vllm.config.SpeculativeConfig][]
- [vllm.config.LoRAConfig][]
- [vllm.config.PromptAdapterConfig][]
- [vllm.config.MultiModalConfig][]
- [vllm.config.PoolerConfig][]
- [vllm.config.DecodingConfig][]

View File

@ -14,7 +14,7 @@ For example:
```python
from vllm import LLM
model = LLM(
llm = LLM(
model="cerebras/Cerebras-GPT-1.3B",
hf_overrides={"architectures": ["GPT2LMHeadModel"]}, # GPT-2
)

View File

@ -98,7 +98,7 @@ For additional features and advanced configurations, refer to the official [MkDo
??? console "Commands"
```bash
pip install -r requirements/dev.txt
pip install -r requirements/common.txt -r requirements/dev.txt
# Linting, formatting and static type checking
pre-commit install --hook-type pre-commit --hook-type commit-msg

View File

@ -134,7 +134,7 @@ MAX_JOBS=16 uv pip install --system \
```bash
uv pip install --system \
--no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
--no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.5"
```
### causal-conv1d

View File

@ -9,10 +9,13 @@ We support tracing vLLM workers using the `torch.profiler` module. You can enabl
The OpenAI server also needs to be started with the `VLLM_TORCH_PROFILER_DIR` environment variable set.
When using `benchmarks/benchmark_serving.py`, you can enable profiling by passing the `--profile` flag.
When using `vllm bench serve`, you can enable profiling by passing the `--profile` flag.
Traces can be visualized using <https://ui.perfetto.dev/>.
!!! tip
You can directly call bench module without installing vllm using `python -m vllm.entrypoints.cli.main bench`.
!!! tip
Only send a few requests through vLLM when profiling, as the traces can get quite large. Also, no need to untar the traces, they can be viewed directly.
@ -35,10 +38,10 @@ VLLM_TORCH_PROFILER_DIR=./vllm_profile \
--model meta-llama/Meta-Llama-3-70B
```
benchmark_serving.py:
vllm bench command:
```bash
python benchmarks/benchmark_serving.py \
vllm bench serve \
--backend vllm \
--model meta-llama/Meta-Llama-3-70B \
--dataset-name sharegpt \
@ -69,13 +72,13 @@ apt install nsight-systems-cli
For basic usage, you can just append `nsys profile -o report.nsys-rep --trace-fork-before-exec=true --cuda-graph-trace=node` before any existing script you would run for offline inference.
The following is an example using the `benchmarks/benchmark_latency.py` script:
The following is an example using the `vllm bench latency` script:
```bash
nsys profile -o report.nsys-rep \
--trace-fork-before-exec=true \
--cuda-graph-trace=node \
python benchmarks/benchmark_latency.py \
vllm bench latency \
--model meta-llama/Llama-3.1-8B-Instruct \
--num-iters-warmup 5 \
--num-iters 1 \
@ -98,7 +101,7 @@ nsys profile -o report.nsys-rep \
vllm serve meta-llama/Llama-3.1-8B-Instruct
# client
python benchmarks/benchmark_serving.py \
vllm bench serve \
--backend vllm \
--model meta-llama/Llama-3.1-8B-Instruct \
--num-prompts 1 \
@ -132,7 +135,7 @@ You can view these profiles either as summaries in the CLI, using `nsys stats [p
...
** CUDA GPU Kernel Summary (cuda_gpu_kern_sum):
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name
-------- --------------- --------- ----------- ----------- -------- --------- ----------- ----------------------------------------------------------------------------------------------------
46.3 10,327,352,338 17,505 589,965.9 144,383.0 27,040 3,126,460 944,263.8 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_of…
14.8 3,305,114,764 5,152 641,520.7 293,408.0 287,296 2,822,716 867,124.9 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize256x128x64_warpgroupsize2x1x1_execute_segment_k_of…
@ -143,7 +146,7 @@ You can view these profiles either as summaries in the CLI, using `nsys stats [p
2.6 587,283,113 37,824 15,526.7 3,008.0 2,719 2,517,756 139,091.1 std::enable_if<T2>(int)0&&vllm::_typeConvert<T1>::exists, void>::type vllm::fused_add_rms_norm_kern…
1.9 418,362,605 18,912 22,121.5 3,871.0 3,328 2,523,870 175,248.2 void vllm::rotary_embedding_kernel<c10::BFloat16, (bool)1>(const long *, T1 *, T1 *, const T1 *, in…
0.7 167,083,069 18,880 8,849.7 2,240.0 1,471 2,499,996 101,436.1 void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0…
...
...
```
GUI example:

View File

@ -5,17 +5,17 @@ Ensure the v1 LLM Engine exposes a superset of the metrics available in v0.
## Objectives
- Achieve parity of metrics between v0 and v1.
- The priority use case is accessing these metrics via Prometheus as this is what we expect to be used in production environments.
- Logging support - i.e. printing metrics to the info log - is provided for more ad-hoc testing, debugging, development, and exploratory use cases.
- The priority use case is accessing these metrics via Prometheus, as this is what we expect to be used in production environments.
- Logging support (i.e. printing metrics to the info log) is provided for more ad-hoc testing, debugging, development, and exploratory use cases.
## Background
Metrics in vLLM can be categorized as follows:
1. Server-level metrics: these are global metrics that track the state and performance of the LLM engine. These are typically exposed as Gauges or Counters in Prometheus.
2. Request-level metrics: these are metrics that track the characteristics - e.g. size and timing - of individual requests. These are typically exposed as Histograms in Prometheus, and are often the SLO that an SRE monitoring vLLM will be tracking.
1. Server-level metrics: Global metrics that track the state and performance of the LLM engine. These are typically exposed as Gauges or Counters in Prometheus.
2. Request-level metrics: Metrics that track the characteristics (e.g. size and timing) of individual requests. These are typically exposed as Histograms in Prometheus and are often the SLOs that an SRE monitoring vLLM will be tracking.
The mental model is that the "Server-level Metrics" explain why the "Request-level Metrics" are what they are.
The mental model is that server-level metrics help explain the values of request-level metrics.
### v0 Metrics
@ -61,24 +61,24 @@ These are documented under [Inferencing and Serving -> Production Metrics](../..
### Grafana Dashboard
vLLM also provides [a reference example](https://docs.vllm.ai/en/latest/examples/prometheus_grafana.html) for how to collect and store these metrics using Prometheus and visualize them using a Grafana dashboard.
vLLM also provides [a reference example](../../examples/online_serving/prometheus_grafana.md) for how to collect and store these metrics using Prometheus and visualize them using a Grafana dashboard.
The subset of metrics exposed in the Grafana dashboard gives us an indication of which metrics are especially important:
- `vllm:e2e_request_latency_seconds_bucket` - End to end request latency measured in seconds
- `vllm:prompt_tokens_total` - Prompt Tokens
- `vllm:generation_tokens_total` - Generation Tokens
- `vllm:time_per_output_token_seconds` - Inter token latency (Time Per Output Token, TPOT) in second.
- `vllm:e2e_request_latency_seconds_bucket` - End to end request latency measured in seconds.
- `vllm:prompt_tokens_total` - Prompt tokens.
- `vllm:generation_tokens_total` - Generation tokens.
- `vllm:time_per_output_token_seconds` - Inter-token latency (Time Per Output Token, TPOT) in seconds.
- `vllm:time_to_first_token_seconds` - Time to First Token (TTFT) latency in seconds.
- `vllm:num_requests_running` (also, `_swapped` and `_waiting`) - Number of requests in RUNNING, WAITING, and SWAPPED state
- `vllm:num_requests_running` (also, `_swapped` and `_waiting`) - Number of requests in the RUNNING, WAITING, and SWAPPED states.
- `vllm:gpu_cache_usage_perc` - Percentage of used cache blocks by vLLM.
- `vllm:request_prompt_tokens` - Request prompt length
- `vllm:request_generation_tokens` - request generation length
- `vllm:request_success_total` - Number of finished requests by their finish reason: either an EOS token was generated or the max sequence length was reached
- `vllm:request_queue_time_seconds` - Queue Time
- `vllm:request_prefill_time_seconds` - Requests Prefill Time
- `vllm:request_decode_time_seconds` - Requests Decode Time
- `vllm:request_max_num_generation_tokens` - Max Generation Token in Sequence Group
- `vllm:request_prompt_tokens` - Request prompt length.
- `vllm:request_generation_tokens` - Request generation length.
- `vllm:request_success_total` - Number of finished requests by their finish reason: either an EOS token was generated or the max sequence length was reached.
- `vllm:request_queue_time_seconds` - Queue time.
- `vllm:request_prefill_time_seconds` - Requests prefill time.
- `vllm:request_decode_time_seconds` - Requests decode time.
- `vllm:request_max_num_generation_tokens` - Max generation tokens in a sequence group.
See [the PR which added this Dashboard](gh-pr:2316) for interesting and useful background on the choices made here.
@ -103,7 +103,7 @@ In v0, metrics are collected in the engine core process and we use multi-process
### Built in Python/Process Metrics
The following metrics are supported by default by `prometheus_client`, but the are not exposed with multiprocess mode is used:
The following metrics are supported by default by `prometheus_client`, but they are not exposed when multi-process mode is used:
- `python_gc_objects_collected_total`
- `python_gc_objects_uncollectable_total`
@ -158,6 +158,7 @@ In v1, we wish to move computation and overhead out of the engine core
process to minimize the time between each forward pass.
The overall idea of V1 EngineCore design is:
- EngineCore is the inner loop. Performance is most critical here
- AsyncLLM is the outer loop. This is overlapped with GPU execution
(ideally), so this is where any "overheads" should be if
@ -178,7 +179,7 @@ time" (`time.time()`) to calculate intervals as the former is
unaffected by system clock changes (e.g. from NTP).
It's also important to note that monotonic clocks differ between
processes - each process has its own reference. point. So it is
processes - each process has its own reference point. So it is
meaningless to compare monotonic timestamps from different processes.
Therefore, in order to calculate an interval, we must compare two
@ -343,14 +344,15 @@ vllm:time_to_first_token_seconds_bucket{le="0.1",model_name="meta-llama/Llama-3.
vllm:time_to_first_token_seconds_count{model_name="meta-llama/Llama-3.1-8B-Instruct"} 140.0
```
Note - the choice of histogram buckets to be most useful to users
across a broad set of use cases is not straightforward and will
require refinement over time.
!!! note
The choice of histogram buckets to be most useful to users
across a broad set of use cases is not straightforward and will
require refinement over time.
### Cache Config Info
`prometheus_client` has support for [Info
metrics](https://prometheus.github.io/client_python/instrumenting/info/)
`prometheus_client` has support for
[Info metrics](https://prometheus.github.io/client_python/instrumenting/info/)
which are equivalent to a `Gauge` whose value is permanently set to 1,
but exposes interesting key/value pair information via labels. This is
used for information about an instance that does not change - so it
@ -363,14 +365,11 @@ We use this concept for the `vllm:cache_config_info` metric:
# HELP vllm:cache_config_info Information of the LLMEngine CacheConfig
# TYPE vllm:cache_config_info gauge
vllm:cache_config_info{block_size="16",cache_dtype="auto",calculate_kv_scales="False",cpu_offload_gb="0",enable_prefix_caching="False",gpu_memory_utilization="0.9",...} 1.0
```
However, `prometheus_client` has [never supported Info metrics in
multiprocessing
mode](https://github.com/prometheus/client_python/pull/300) - for
[unclear
reasons](gh-pr:7279#discussion_r1710417152). We
However, `prometheus_client` has
[never supported Info metrics in multiprocessing mode](https://github.com/prometheus/client_python/pull/300) -
for [unclear reasons](gh-pr:7279#discussion_r1710417152). We
simply use a `Gauge` metric set to 1 and
`multiprocess_mode="mostrecent"` instead.
@ -395,11 +394,9 @@ distinguish between per-adapter counts. This should be revisited.
Note that `multiprocess_mode="livemostrecent"` is used - the most
recent metric is used, but only from currently running processes.
This was added in
<gh-pr:9477> and there is
[at least one known
user](https://github.com/kubernetes-sigs/gateway-api-inference-extension/pull/54). If
we revisit this design and deprecate the old metric, we should reduce
This was added in <gh-pr:9477> and there is
[at least one known user](https://github.com/kubernetes-sigs/gateway-api-inference-extension/pull/54).
If we revisit this design and deprecate the old metric, we should reduce
the need for a significant deprecation period by making the change in
v0 also and asking this project to move to the new metric.
@ -442,23 +439,20 @@ suddenly (from their perspective) when it is removed, even if there is
an equivalent metric for them to use.
As an example, see how `vllm:avg_prompt_throughput_toks_per_s` was
[deprecated](gh-pr:2764) (with a
comment in the code),
[removed](gh-pr:12383), and then
[noticed by a
user](gh-issue:13218).
[deprecated](gh-pr:2764) (with a comment in the code),
[removed](gh-pr:12383), and then [noticed by a user](gh-issue:13218).
In general:
1) We should be cautious about deprecating metrics, especially since
1. We should be cautious about deprecating metrics, especially since
it can be hard to predict the user impact.
2) We should include a prominent deprecation notice in the help string
2. We should include a prominent deprecation notice in the help string
that is included in the `/metrics' output.
3) We should list deprecated metrics in user-facing documentation and
3. We should list deprecated metrics in user-facing documentation and
release notes.
4) We should consider hiding deprecated metrics behind a CLI argument
in order to give administrators [an escape
hatch](https://kubernetes.io/docs/concepts/cluster-administration/system-metrics/#show-hidden-metrics)
4. We should consider hiding deprecated metrics behind a CLI argument
in order to give administrators
[an escape hatch](https://kubernetes.io/docs/concepts/cluster-administration/system-metrics/#show-hidden-metrics)
for some time before deleting them.
See the [deprecation policy](../../contributing/deprecation_policy.md) for
@ -474,7 +468,7 @@ removed.
The `vllm:time_in_queue_requests` Histogram metric was added by
<gh-pr:9659> and its calculation is:
```
```python
self.metrics.first_scheduled_time = now
self.metrics.time_in_queue = now - self.metrics.arrival_time
```
@ -482,7 +476,7 @@ The `vllm:time_in_queue_requests` Histogram metric was added by
Two weeks later, <gh-pr:4464> added `vllm:request_queue_time_seconds` leaving
us with:
```
```python
if seq_group.is_finished():
if (seq_group.metrics.first_scheduled_time is not None and
seq_group.metrics.first_token_time is not None):
@ -517,8 +511,7 @@ cache to complete other requests), we swap kv cache blocks out to CPU
memory. This is also known as "KV cache offloading" and is configured
with `--swap-space` and `--preemption-mode`.
In v0, [vLLM has long supported beam
search](gh-issue:6226). The
In v0, [vLLM has long supported beam search](gh-issue:6226). The
SequenceGroup encapsulated the idea of N Sequences which
all shared the same prompt kv blocks. This enabled KV cache block
sharing between requests, and copy-on-write to do branching. CPU
@ -530,9 +523,8 @@ option than CPU swapping since blocks can be evicted slowly on demand
and the part of the prompt that was evicted can be recomputed.
SequenceGroup was removed in V1, although a replacement will be
required for "parallel sampling" (`n>1`). [Beam search was moved out of
the core (in
V0)](gh-issue:8306). There was a
required for "parallel sampling" (`n>1`).
[Beam search was moved out of the core (in V0)](gh-issue:8306). There was a
lot of complex code for a very uncommon feature.
In V1, with prefix caching being better (zero over head) and therefore
@ -547,18 +539,18 @@ Some v0 metrics are only relevant in the context of "parallel
sampling". This is where the `n` parameter in a request is used to
request multiple completions from the same prompt.
As part of adding parallel sampling support in <gh-pr:10980> we should
As part of adding parallel sampling support in <gh-pr:10980>, we should
also add these metrics.
- `vllm:request_params_n` (Histogram)
Observes the value of the 'n' parameter of every finished request.
Observes the value of the 'n' parameter of every finished request.
- `vllm:request_max_num_generation_tokens` (Histogram)
Observes the maximum output length of all sequences in every finished
sequence group. In the absence of parallel sampling, this is
equivalent to `vllm:request_generation_tokens`.
Observes the maximum output length of all sequences in every finished
sequence group. In the absence of parallel sampling, this is
equivalent to `vllm:request_generation_tokens`.
### Speculative Decoding
@ -576,26 +568,23 @@ There is a PR under review (<gh-pr:12193>) to add "prompt lookup (ngram)"
seculative decoding to v1. Other techniques will follow. We should
revisit the v0 metrics in this context.
Note - we should probably expose acceptance rate as separate accepted
and draft counters, like we do for prefix caching hit rate. Efficiency
likely also needs similar treatment.
!!! note
We should probably expose acceptance rate as separate accepted
and draft counters, like we do for prefix caching hit rate. Efficiency
likely also needs similar treatment.
### Autoscaling and Load-balancing
A common use case for our metrics is to support automated scaling of
vLLM instances.
For related discussion from the [Kubernetes Serving Working
Group](https://github.com/kubernetes/community/tree/master/wg-serving),
For related discussion from the
[Kubernetes Serving Working Group](https://github.com/kubernetes/community/tree/master/wg-serving),
see:
- [Standardizing Large Model Server Metrics in
Kubernetes](https://docs.google.com/document/d/1SpSp1E6moa4HSrJnS4x3NpLuj88sMXr2tbofKlzTZpk)
- [Benchmarking LLM Workloads for Performance Evaluation and
Autoscaling in
Kubernetes](https://docs.google.com/document/d/1k4Q4X14hW4vftElIuYGDu5KDe2LtV1XammoG-Xi3bbQ)
- [Inference
Perf](https://github.com/kubernetes-sigs/wg-serving/tree/main/proposals/013-inference-perf)
- [Standardizing Large Model Server Metrics in Kubernetes](https://docs.google.com/document/d/1SpSp1E6moa4HSrJnS4x3NpLuj88sMXr2tbofKlzTZpk)
- [Benchmarking LLM Workloads for Performance Evaluation and Autoscaling in Kubernetes](https://docs.google.com/document/d/1k4Q4X14hW4vftElIuYGDu5KDe2LtV1XammoG-Xi3bbQ)
- [Inference Perf](https://github.com/kubernetes-sigs/wg-serving/tree/main/proposals/013-inference-perf)
- <gh-issue:5041> and <gh-pr:12726>.
This is a non-trivial topic. Consider this comment from Rob:
@ -619,19 +608,16 @@ should judge an instance as approaching saturation:
Our approach to naming metrics probably deserves to be revisited:
1. The use of colons in metric names seems contrary to ["colons are
reserved for user defined recording
rules"](https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels)
1. The use of colons in metric names seems contrary to
["colons are reserved for user defined recording rules"](https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels).
2. Most of our metrics follow the convention of ending with units, but
not all do.
3. Some of our metric names end with `_total`:
```
If there is a suffix of `_total` on the metric name, it will be removed. When
exposing the time series for counter, a `_total` suffix will be added. This is
for compatibility between OpenMetrics and the Prometheus text format, as OpenMetrics
requires the `_total` suffix.
```
If there is a suffix of `_total` on the metric name, it will be removed. When
exposing the time series for counter, a `_total` suffix will be added. This is
for compatibility between OpenMetrics and the Prometheus text format, as OpenMetrics
requires the `_total` suffix.
### Adding More Metrics
@ -642,8 +628,7 @@ There is no shortage of ideas for new metrics:
- Proposals arising from specific use cases, like the Kubernetes
auto-scaling topic above
- Proposals that might arise out of standardisation efforts like
[OpenTelemetry Semantic Conventions for Gen
AI](https://github.com/open-telemetry/semantic-conventions/tree/main/docs/gen-ai).
[OpenTelemetry Semantic Conventions for Gen AI](https://github.com/open-telemetry/semantic-conventions/tree/main/docs/gen-ai).
We should be cautious in our approach to adding new metrics. While
metrics are often relatively straightforward to add:
@ -668,19 +653,14 @@ fall under the more general heading of "Observability".
v0 has support for OpenTelemetry tracing:
- Added by <gh-pr:4687>
- Configured with `--oltp-traces-endpoint` and
`--collect-detailed-traces`
- [OpenTelemetry blog
post](https://opentelemetry.io/blog/2024/llm-observability/)
- [User-facing
docs](https://docs.vllm.ai/en/latest/examples/opentelemetry.html)
- [Blog
post](https://medium.com/@ronen.schaffer/follow-the-trail-supercharging-vllm-with-opentelemetry-distributed-tracing-aa655229b46f)
- [IBM product
docs](https://www.ibm.com/docs/en/instana-observability/current?topic=mgaa-monitoring-large-language-models-llms-vllm-public-preview)
- Configured with `--oltp-traces-endpoint` and `--collect-detailed-traces`
- [OpenTelemetry blog post](https://opentelemetry.io/blog/2024/llm-observability/)
- [User-facing docs](../../examples/online_serving/opentelemetry.md)
- [Blog post](https://medium.com/@ronen.schaffer/follow-the-trail-supercharging-vllm-with-opentelemetry-distributed-tracing-aa655229b46f)
- [IBM product docs](https://www.ibm.com/docs/en/instana-observability/current?topic=mgaa-monitoring-large-language-models-llms-vllm-public-preview)
OpenTelemetry has a [Gen AI Working
Group](https://github.com/open-telemetry/community/blob/main/projects/gen-ai.md).
OpenTelemetry has a
[Gen AI Working Group](https://github.com/open-telemetry/community/blob/main/projects/gen-ai.md).
Since metrics is a big enough topic on its own, we are going to tackle
the topic of tracing in v1 separately.
@ -699,7 +679,7 @@ These metrics are only enabled when OpenTelemetry tracing is enabled
and if `--collect-detailed-traces=all/model/worker` is used. The
documentation for this option states:
> collect detailed traces for the specified "modules. This involves
> collect detailed traces for the specified modules. This involves
> use of possibly costly and or blocking operations and hence might
> have a performance impact.

View File

@ -3,14 +3,14 @@ An implementation of xPyD with dynamic scaling based on point-to-point communica
# Detailed Design
## Overall Process
As shown in Figure 1, the overall process of this **PD disaggregation** solution is described through a request flow:
As shown in Figure 1, the overall process of this **PD disaggregation** solution is described through a request flow:
1. The client sends an HTTP request to the Proxy/Router's `/v1/completions` interface.
2. The Proxy/Router selects a **1P1D (1 Prefill instance + 1 Decode instance)** through either through round-robin or random selection, generates a `request_id` (rules to be introduced later), modifies the `max_tokens` in the HTTP request message to **1**, and then forwards the request to the **P instance**.
3. Immediately afterward, the Proxy/Router forwards the **original HTTP request** to the **D instance**.
4. The **P instance** performs **Prefill** and then **actively sends the generated KV cache** to the D instance (using **PUT_ASYNC** mode). The D instance's `zmq_addr` can be resolved through the `request_id`.
5. The **D instance** has a **dedicated thread** for receiving the KV cache (to avoid blocking the main process). The received KV cache is saved into the **GPU memory buffer**, the size of which is determined by the vLLM startup parameter `kv_buffer_size`. When the GPU buffer is full, the KV cache is stored in the **local Tensor memory pool**.
6. During the **Decode**, the D instance's main process retrieves the KV cache (transmitted by the P instance) from either the **GPU buffer** or the **memory pool**, thereby **skipping Prefill**.
1. The client sends an HTTP request to the Proxy/Router's `/v1/completions` interface.
2. The Proxy/Router selects a **1P1D (1 Prefill instance + 1 Decode instance)** through either through round-robin or random selection, generates a `request_id` (rules to be introduced later), modifies the `max_tokens` in the HTTP request message to **1**, and then forwards the request to the **P instance**.
3. Immediately afterward, the Proxy/Router forwards the **original HTTP request** to the **D instance**.
4. The **P instance** performs **Prefill** and then **actively sends the generated KV cache** to the D instance (using **PUT_ASYNC** mode). The D instance's `zmq_addr` can be resolved through the `request_id`.
5. The **D instance** has a **dedicated thread** for receiving the KV cache (to avoid blocking the main process). The received KV cache is saved into the **GPU memory buffer**, the size of which is determined by the vLLM startup parameter `kv_buffer_size`. When the GPU buffer is full, the KV cache is stored in the **local Tensor memory pool**.
6. During the **Decode**, the D instance's main process retrieves the KV cache (transmitted by the P instance) from either the **GPU buffer** or the **memory pool**, thereby **skipping Prefill**.
7. After completing **Decode**, the D instance returns the result to the **Proxy/Router**, which then forwards it to the **client**.
![image1](https://github.com/user-attachments/assets/fb01bde6-755b-49f7-ad45-48a94b1e10a7)
@ -31,7 +31,7 @@ Each P/D instance periodically sends a heartbeat packet to the Proxy/Router (cur
## KV Cache Transfer Methods
There are three methods for KVcache transfer: PUT, GET, and PUT_ASYNC. These methods can be specified using the `--kv-transfer-config` and `kv_connector_extra_config` parameters, specifically through the `send_type` field. Both PUT and PUT_ASYNC involve the P instance actively sending KVcache to the D instance. The difference is that PUT is a synchronous transfer method that blocks the main process, while PUT_ASYNC is an asynchronous transfer method. PUT_ASYNC uses a dedicated thread for sending KVcache, which means it does not block the main process. In contrast, the GET method involves the P instance saving the KVcache to the memory buffer after computing the prefill. The D instance then actively retrieves the computed KVcache from the P instance once it has allocated space for the KVcache.
There are three methods for KVCache transfer: PUT, GET, and PUT_ASYNC. These methods can be specified using the `--kv-transfer-config` and `kv_connector_extra_config` parameters, specifically through the `send_type` field. Both PUT and PUT_ASYNC involve the P instance actively sending KVCache to the D instance. The difference is that PUT is a synchronous transfer method that blocks the main process, while PUT_ASYNC is an asynchronous transfer method. PUT_ASYNC uses a dedicated thread for sending KVCache, which means it does not block the main process. In contrast, the GET method involves the P instance saving the KVCache to the memory buffer after computing the prefill. The D instance then actively retrieves the computed KVCache from the P instance once it has allocated space for the KVCache.
Experimental results have shown that the performance of these methods, from highest to lowest, is as follows: PUT_ASYNC → GET → PUT.
@ -39,13 +39,13 @@ Experimental results have shown that the performance of these methods, from high
As long as the address of the counterpart is known, point-to-point KV cache transfer (using NCCL) can be performed, without being constrained by rank and world size. To support dynamic scaling (expansion and contraction) of instances with PD disaggregation. This means that adding or removing P/D instances does not require a full system restart.
Each P/D instance only needs to create a single `P2pNcclEngine` instance. This instance maintains a ZMQ Server, which runs a dedicated thread to listen on the `zmq_addr` address and receive control flow requests from other instances. These requests include requests to establish an NCCL connection and requests to send KVcache metadata (such as tensor shapes and data types). However, it does not actually transmit the KVcache data itself.
Each P/D instance only needs to create a single `P2pNcclEngine` instance. This instance maintains a ZMQ Server, which runs a dedicated thread to listen on the `zmq_addr` address and receive control flow requests from other instances. These requests include requests to establish an NCCL connection and requests to send KVCache metadata (such as tensor shapes and data types). However, it does not actually transmit the KVCache data itself.
When a P instance and a D instance transmit KVcache for the first time, they need to establish a ZMQ connection and an NCCL group. For subsequent KVcache transmissions, this ZMQ connection and NCCL group are reused. The NCCL group consists of only two ranks, meaning the world size is equal to 2. This design is intended to support dynamic scaling, which means that adding or removing P/D instances does not require a full system restart. As long as the address of the counterpart is known, point-to-point KVcache transmission can be performed, without being restricted by rank or world size.
When a P instance and a D instance transmit KVCache for the first time, they need to establish a ZMQ connection and an NCCL group. For subsequent KVCache transmissions, this ZMQ connection and NCCL group are reused. The NCCL group consists of only two ranks, meaning the world size is equal to 2. This design is intended to support dynamic scaling, which means that adding or removing P/D instances does not require a full system restart. As long as the address of the counterpart is known, point-to-point KVCache transmission can be performed, without being restricted by rank or world size.
## NCCL Group Topology
Currently, only symmetric TP (Tensor Parallelism) methods are supported for KVcache transmission. Asymmetric TP and PP (Pipeline Parallelism) methods will be supported in the future. Figure 2 illustrates the 1P2D setup, where each instance has a TP (Tensor Parallelism) degree of 2. There are a total of 7 NCCL groups: three vLLM instances each have one NCCL group with TP=2. Additionally, the 0th GPU card of the P instance establishes an NCCL group with the 0th GPU card of each D instance. Similarly, the 1st GPU card of the P instance establishes an NCCL group with the 1st GPU card of each D instance.
Currently, only symmetric TP (Tensor Parallelism) methods are supported for KVCache transmission. Asymmetric TP and PP (Pipeline Parallelism) methods will be supported in the future. Figure 2 illustrates the 1P2D setup, where each instance has a TP (Tensor Parallelism) degree of 2. There are a total of 7 NCCL groups: three vLLM instances each have one NCCL group with TP=2. Additionally, the 0th GPU card of the P instance establishes an NCCL group with the 0th GPU card of each D instance. Similarly, the 1st GPU card of the P instance establishes an NCCL group with the 1st GPU card of each D instance.
![image2](https://github.com/user-attachments/assets/837e61d6-365e-4cbf-8640-6dd7ab295b36)
@ -53,33 +53,17 @@ Each NCCL group occupies a certain amount of GPU memory buffer for communication
## GPU Memory Buffer and Tensor Memory Pool
The trade-off in the size of the memory buffer is as follows: For P instances, the memory buffer is not required in PUT and PUT_ASYNC modes, but it is necessary in GET mode. For D instances, a memory buffer is needed in all three modes. The memory buffer for D instances should not be too large. Similarly, for P instances in GET mode, the memory buffer should also not be too large. The memory buffer of D instances is used to temporarily store KVcache sent by P instances. If it is too large, it will reduce the KVcache space available for normal inference by D instances, thereby decreasing the inference batch size and ultimately leading to a reduction in output throughput. The size of the memory buffer is configured by the parameter `kv_buffer_size`, measured in bytes, and is typically set to 5%10% of the memory size.
The trade-off in the size of the memory buffer is as follows: For P instances, the memory buffer is not required in PUT and PUT_ASYNC modes, but it is necessary in GET mode. For D instances, a memory buffer is needed in all three modes. The memory buffer for D instances should not be too large. Similarly, for P instances in GET mode, the memory buffer should also not be too large. The memory buffer of D instances is used to temporarily store KVCache sent by P instances. If it is too large, it will reduce the KVCache space available for normal inference by D instances, thereby decreasing the inference batch size and ultimately leading to a reduction in output throughput. The size of the memory buffer is configured by the parameter `kv_buffer_size`, measured in bytes, and is typically set to 5%10% of the memory size.
If the `--max-num-seqs` parameter for P instances is set to a large value, due to the large batch size, P instances will generate a large amount of KVcache simultaneously. This may exceed the capacity of the memory buffer of D instances, resulting in KVcache loss. Once KVcache is lost, D instances need to recompute Prefill, which is equivalent to performing Prefill twice. Consequently, the time-to-first-token (TTFT) will significantly increase, leading to degraded performance.
If the `--max-num-seqs` parameter for P instances is set to a large value, due to the large batch size, P instances will generate a large amount of KVCache simultaneously. This may exceed the capacity of the memory buffer of D instances, resulting in KVCache loss. Once KVCache is lost, D instances need to recompute Prefill, which is equivalent to performing Prefill twice. Consequently, the time-to-first-token (TTFT) will significantly increase, leading to degraded performance.
To address the above issues, I have designed and developed a local Tensor memory pool for storing KVcache, inspired by the buddy system used in Linux memory modules. Since the memory is sufficiently large, typically in the TB range on servers, there is no need to consider prefix caching or using block-based designs to reuse memory, thereby saving space. When the memory buffer is insufficient, KVcache can be directly stored in the Tensor memory pool, and D instances can subsequently retrieve KVcache from it. The read and write speed is that of PCIe, with PCIe 4.0 having a speed of approximately 21 GB/s, which is usually faster than the Prefill speed. Otherwise, solutions like Mooncake and lmcache would not be necessary. The Tensor memory pool acts as a flood diversion area, typically unused except during sudden traffic surges. In the worst-case scenario, my solution performs no worse than the normal situation with a Cache store.
To address the above issues, I have designed and developed a local Tensor memory pool for storing KVCache, inspired by the buddy system used in Linux memory modules. Since the memory is sufficiently large, typically in the TB range on servers, there is no need to consider prefix caching or using block-based designs to reuse memory, thereby saving space. When the memory buffer is insufficient, KVCache can be directly stored in the Tensor memory pool, and D instances can subsequently retrieve KVCache from it. The read and write speed is that of PCIe, with PCIe 4.0 having a speed of approximately 21 GB/s, which is usually faster than the Prefill speed. Otherwise, solutions like Mooncake and lmcache would not be necessary. The Tensor memory pool acts as a flood diversion area, typically unused except during sudden traffic surges. In the worst-case scenario, my solution performs no worse than the normal situation with a Cache store.
# Install vLLM
??? console "Commands"
```shell
# Enter the home directory or your working directory.
cd /home
# Download the installation package, and I will update the commit-id in time. You can directly copy the command.
wget https://vllm-wheels.s3.us-west-2.amazonaws.com/9112b443a042d8d815880b8780633882ad32b183/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl
# Download the code repository.
git clone -b xpyd-v1 https://github.com/Abatom/vllm.git
cd vllm
# Set the installation package path.
export VLLM_PRECOMPILED_WHEEL_LOCATION=/home/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl
# installation
pip install -e . -v
```
```shell
pip install "vllm>=0.9.2"
```
# Run xPyD
@ -90,7 +74,7 @@ To address the above issues, I have designed and developed a local Tensor memory
- You may need to modify the `kv_buffer_size` and `port` in the following commands (if there is a conflict).
- `PUT_ASYNC` offers the best performance and should be prioritized.
- The `--port` must be consistent with the `http_port` in the `--kv-transfer-config`.
- The `disagg_prefill_proxy_xpyd.py` script will use port 10001 (for receiving client requests) and port 30001 (for receiving service discovery from P and D instances).
- The `disagg_proxy_p2p_nccl_xpyd.py` script will use port 10001 (for receiving client requests) and port 30001 (for receiving service discovery from P and D instances).
- The node running the proxy must have `quart` installed.
- Supports multiple nodes; you just need to modify the `proxy_ip` and `proxy_port` in `--kv-transfer-config`.
- In the following examples, it is assumed that **the proxy's IP is 10.0.1.1**.
@ -100,8 +84,8 @@ To address the above issues, I have designed and developed a local Tensor memory
### Proxy (e.g. 10.0.1.1)
```shell
cd {your vllm directory}/examples/online_serving/disagg_xpyd/
python3 disagg_prefill_proxy_xpyd.py &
cd {your vllm directory}/examples/online_serving/disaggregated_serving_p2p_nccl_xpyd/
python3 disagg_proxy_p2p_nccl_xpyd.py &
```
### Prefill1 (e.g. 10.0.1.2 or 10.0.1.1)
@ -111,7 +95,7 @@ python3 disagg_prefill_proxy_xpyd.py &
```shell
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=0 vllm serve {your model directory} \
--host 0.0.0.0 \
--port 20005 \
--port 20001 \
--tensor-parallel-size 1 \
--seed 1024 \
--served-model-name base_model \
@ -123,7 +107,7 @@ python3 disagg_prefill_proxy_xpyd.py &
--gpu-memory-utilization 0.9 \
--disable-log-request \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"21001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20005","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"21001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20001"}}' > /var/vllm.log 2>&1 &
```
### Decode1 (e.g. 10.0.1.3 or 10.0.1.1)
@ -133,7 +117,7 @@ python3 disagg_prefill_proxy_xpyd.py &
```shell
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=1 vllm serve {your model directory} \
--host 0.0.0.0 \
--port 20009 \
--port 20002 \
--tensor-parallel-size 1 \
--seed 1024 \
--served-model-name base_model \
@ -145,7 +129,7 @@ python3 disagg_prefill_proxy_xpyd.py &
--gpu-memory-utilization 0.7 \
--disable-log-request \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"22001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20009","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"22001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20002"}}' > /var/vllm.log 2>&1 &
```
### Decode2 (e.g. 10.0.1.4 or 10.0.1.1)
@ -167,7 +151,7 @@ python3 disagg_prefill_proxy_xpyd.py &
--gpu-memory-utilization 0.7 \
--disable-log-request \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"23001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20003","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"23001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20003"}}' > /var/vllm.log 2>&1 &
```
### Decode3 (e.g. 10.0.1.5 or 10.0.1.1)
@ -177,7 +161,7 @@ python3 disagg_prefill_proxy_xpyd.py &
```shell
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=3 vllm serve {your model directory} \
--host 0.0.0.0 \
--port 20008 \
--port 20004 \
--tensor-parallel-size 1 \
--seed 1024 \
--served-model-name base_model \
@ -189,7 +173,7 @@ python3 disagg_prefill_proxy_xpyd.py &
--gpu-memory-utilization 0.7 \
--disable-log-request \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"24001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20008","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"24001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20004"}}' > /var/vllm.log 2>&1 &
```
## Run 3P1D
@ -197,8 +181,8 @@ python3 disagg_prefill_proxy_xpyd.py &
### Proxy (e.g. 10.0.1.1)
```shell
cd {your vllm directory}/examples/online_serving/disagg_xpyd/
python3 disagg_prefill_proxy_xpyd.py &
cd {your vllm directory}/examples/online_serving/disaggregated_serving_p2p_nccl_xpyd/
python3 disagg_proxy_p2p_nccl_xpyd.py &
```
### Prefill1 (e.g. 10.0.1.2 or 10.0.1.1)
@ -208,7 +192,7 @@ python3 disagg_prefill_proxy_xpyd.py &
```shell
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=0 vllm serve {your model directory} \
--host 0.0.0.0 \
--port 20005 \
--port 20001 \
--tensor-parallel-size 1 \
--seed 1024 \
--served-model-name base_model \
@ -220,7 +204,7 @@ python3 disagg_prefill_proxy_xpyd.py &
--gpu-memory-utilization 0.9 \
--disable-log-request \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"21001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20005","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"21001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20001"}}' > /var/vllm.log 2>&1 &
```
### Prefill2 (e.g. 10.0.1.3 or 10.0.1.1)
@ -230,7 +214,7 @@ python3 disagg_prefill_proxy_xpyd.py &
```shell
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=1 vllm serve {your model directory} \
--host 0.0.0.0 \
--port 20009 \
--port 20002 \
--tensor-parallel-size 1 \
--seed 1024 \
--served-model-name base_model \
@ -242,7 +226,7 @@ python3 disagg_prefill_proxy_xpyd.py &
--gpu-memory-utilization 0.9 \
--disable-log-request \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"22001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20009","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"22001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20002"}}' > /var/vllm.log 2>&1 &
```
### Prefill3 (e.g. 10.0.1.4 or 10.0.1.1)
@ -264,7 +248,7 @@ python3 disagg_prefill_proxy_xpyd.py &
--gpu-memory-utilization 0.9 \
--disable-log-request \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"23001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20003","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_producer","kv_buffer_size":"1e1","kv_port":"23001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20003"}}' > /var/vllm.log 2>&1 &
```
### Decode1 (e.g. 10.0.1.5 or 10.0.1.1)
@ -274,7 +258,7 @@ python3 disagg_prefill_proxy_xpyd.py &
```shell
VLLM_USE_V1=1 CUDA_VISIBLE_DEVICES=3 vllm serve {your model directory} \
--host 0.0.0.0 \
--port 20008 \
--port 20004 \
--tensor-parallel-size 1 \
--seed 1024 \
--served-model-name base_model \
@ -286,7 +270,7 @@ python3 disagg_prefill_proxy_xpyd.py &
--gpu-memory-utilization 0.7 \
--disable-log-request \
--kv-transfer-config \
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"24001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20008","send_type":"PUT_ASYNC","nccl_num_channels":"16"}}' > /var/vllm.log 2>&1 &
'{"kv_connector":"P2pNcclConnector","kv_role":"kv_consumer","kv_buffer_size":"8e9","kv_port":"24001","kv_connector_extra_config":{"proxy_ip":"10.0.1.1","proxy_port":"30001","http_port":"20004"}}' > /var/vllm.log 2>&1 &
```
# Single request
@ -307,7 +291,7 @@ curl -X POST -s http://10.0.1.1:10001/v1/completions \
??? console "Command"
```shell
python3 benchmark_serving.py \
vllm bench serve \
--backend vllm \
--model base_model \
--tokenizer meta-llama/Llama-3.1-8B-Instruct \
@ -334,24 +318,6 @@ pgrep python | xargs kill -9 && pkill -f python
# Test data
## **Scenario 1**: 1K input & 1K output tokens, E2E P99 latency ~20s
- **1P5D (6×A800) vs vLLM (1×A800)**:
- Throughput ↑7.2% (1085 → 6979/6)
- ITL (P99) ↓81.3% (120ms → 22.9ms)
- TTFT (P99) ↑26.8% (175ms → 222ms)
- TPOT: No change
## **Scenario**: 1K input & 200 output tokens, E2E P99 latency ~2s
- **1P6D (7×A800) vs vLLM (1×A800)**:
- Throughput ↑9.6% (1085 → 8329/7)
- ITL (P99) ↓81.0% (120ms → 22.7ms)
- TTFT (P99) ↑210% (175ms →543ms)
- TPOT: No change
## **Scenario 2**: 1K input & 200 output tokens, E2E P99 latency ~4s
- **1P1D (2×A800) vs vLLM (1×A800)**:
- Throughput ↑37.4% (537 → 1476/2)
- ITL (P99) ↓81.8% (127ms → 23.1ms)
- TTFT (P99) ↑41.8% (160ms → 227ms)
- TPOT: No change
![testdata](https://github.com/user-attachments/assets/f791bfc7-9f3d-4e5c-9171-a42f9f4da627)
![testdata](https://github.com/user-attachments/assets/cef0953b-4567-4bf9-b940-405b92a28eb1)

View File

@ -34,23 +34,22 @@ th:not(:first-child) {
}
</style>
| Feature | [CP][chunked-prefill] | [APC](automatic_prefix_caching.md) | [LoRA](lora.md) | <abbr title="Prompt Adapter">prmpt adptr</abbr> | [SD](spec_decode.md) | CUDA graph | <abbr title="Pooling Models">pooling</abbr> | <abbr title="Encoder-Decoder Models">enc-dec</abbr> | <abbr title="Logprobs">logP</abbr> | <abbr title="Prompt Logprobs">prmpt logP</abbr> | <abbr title="Async Output Processing">async output</abbr> | multi-step | <abbr title="Multimodal Inputs">mm</abbr> | best-of | beam-search |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Feature | [CP][chunked-prefill] | [APC](automatic_prefix_caching.md) | [LoRA](lora.md) | [SD](spec_decode.md) | CUDA graph | <abbr title="Pooling Models">pooling</abbr> | <abbr title="Encoder-Decoder Models">enc-dec</abbr> | <abbr title="Logprobs">logP</abbr> | <abbr title="Prompt Logprobs">prmpt logP</abbr> | <abbr title="Async Output Processing">async output</abbr> | multi-step | <abbr title="Multimodal Inputs">mm</abbr> | best-of | beam-search |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| [CP][chunked-prefill] | ✅ | | | | | | | | | | | | | | |
| [APC](automatic_prefix_caching.md) | ✅ | ✅ | | | | | | | | | | | | | |
| [LoRA](lora.md) | ✅ | ✅ | ✅ | | | | | | | | | | | | |
| <abbr title="Prompt Adapter">prmpt adptr</abbr> | ✅ | ✅ | ✅ | | | | | | | | | | | | |
| [SD](spec_decode.md) | ✅ | ✅ | | ✅ | ✅ | | | | | | | | | | |
| CUDA graph | | | | | | ✅ | | | | | | | | | |
| <abbr title="Pooling Models">pooling</abbr> | ❌ | ❌ | ❌ | ❌ | | | ✅ | | | | | | | | |
| <abbr title="Encoder-Decoder Models">enc-dec</abbr> | | [](gh-issue:7366) | | | [](gh-issue:7366) | | ✅ | ✅ | | | | | | | |
| <abbr title="Logprobs">logP</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | | | | | |
| <abbr title="Prompt Logprobs">prmpt logP</abbr> | ✅ | ✅ | ✅ | | ✅ | | ❌ | ✅ | ✅ | ✅ | | | | | |
| <abbr title="Async Output Processing">async output</abbr> | | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | | | | |
| multi-step | ❌ | ✅ | ❌ | ✅ | | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ✅ | | | |
| <abbr title="Multimodal Inputs">mm</abbr> | ✅ | [🟠](gh-pr:8348) | [🟠](gh-pr:4194) | | | ✅ | ✅ | ✅ | | ✅ | ✅ | ❔ | ✅ | | |
| best-of | ✅ | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | | ✅ | |
| beam-search | ✅ | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | ❔ | ✅ | ✅ |
| [SD](spec_decode.md) | ✅ | ✅ | | | | | | | | | | | | |
| CUDA graph | ✅ | ✅ | | ✅ | ✅ | | | | | | | | | |
| <abbr title="Pooling Models">pooling</abbr> | | | | | | ✅ | | | | | | | | |
| <abbr title="Encoder-Decoder Models">enc-dec</abbr> | ❌ | [](gh-issue:7366) | ❌ | [](gh-issue:7366) | | | ✅ | | | | | | | |
| <abbr title="Logprobs">logP</abbr> | | | | | | | ✅ | ✅ | | | | | | |
| <abbr title="Prompt Logprobs">prmpt logP</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ✅ | | | | | | |
| <abbr title="Async Output Processing">async output</abbr> | ✅ | ✅ | ✅ | | ✅ | | ❌ | ✅ | ✅ | ✅ | | | | |
| multi-step | | ✅ | | ❌ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | | | | |
| <abbr title="Multimodal Inputs">mm</abbr> | ✅ | [🟠](gh-pr:8348) | [🟠](gh-pr:4194) | | ✅ | | ✅ | ✅ | ✅ | ✅ | ❔ | ✅ | | |
| best-of | ✅ | ✅ | ✅ | [](gh-issue:6137) | | | ✅ | ✅ | ✅ | | [](gh-issue:7968) | ✅ | ✅ | |
| beam-search | ✅ | ✅ | ✅ | [](gh-issue:6137) | ✅ | ❌ | ✅ | ✅ | ✅ | ❔ | [](gh-issue:7968) | | ✅ | |
[](){ #feature-x-hardware }
@ -59,10 +58,9 @@ th:not(:first-child) {
| Feature | Volta | Turing | Ampere | Ada | Hopper | CPU | AMD | TPU |
|-----------------------------------------------------------|---------------------|-----------|-----------|--------|------------|--------------------|--------|-----|
| [CP][chunked-prefill] | [](gh-issue:2729) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [APC](automatic_prefix_caching.md) | [](gh-issue:3687) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [LoRA](lora.md) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| <abbr title="Prompt Adapter">prmpt adptr</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | [](gh-issue:8475) | ✅ | ❌ |
| [SD](spec_decode.md) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ |
| [APC](automatic_prefix_caching.md) | [](gh-issue:3687) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [LoRA](lora.md) | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ |
| [SD](spec_decode.md) | ✅ | ✅ | ✅ | ✅ | ✅ | | ✅ | ❌ |
| CUDA graph | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ✅ | ❌ |
| <abbr title="Pooling Models">pooling</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❔ | ❌ |
| <abbr title="Encoder-Decoder Models">enc-dec</abbr> | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ❌ | ❌ |

View File

@ -302,7 +302,7 @@ To this end, we allow registration of default multimodal LoRAs to handle this au
return tokenizer.apply_chat_template(chat, tokenize=False)
model = LLM(
llm = LLM(
model=model_id,
enable_lora=True,
max_lora_rank=64,
@ -329,7 +329,7 @@ To this end, we allow registration of default multimodal LoRAs to handle this au
}
outputs = model.generate(
outputs = llm.generate(
inputs,
sampling_params=SamplingParams(
temperature=0.2,

View File

@ -98,7 +98,7 @@ To substitute multiple images inside the same text prompt, you can pass in a lis
Full example: <gh-file:examples/offline_inference/vision_language_multi_image.py>
If using the [LLM.chat](https://docs.vllm.ai/en/stable/models/generative_models.html#llmchat) method, you can pass images directly in the message content using various formats: image URLs, PIL Image objects, or pre-computed embeddings:
If using the [LLM.chat](../models/generative_models.md#llmchat) method, you can pass images directly in the message content using various formats: image URLs, PIL Image objects, or pre-computed embeddings:
```python
from vllm import LLM
@ -177,6 +177,70 @@ Multi-image input can be extended to perform video captioning. We show this with
You can pass a list of NumPy arrays directly to the `'video'` field of the multi-modal dictionary
instead of using multi-image input.
Instead of NumPy arrays, you can also pass `'torch.Tensor'` instances, as shown in this example using Qwen2.5-VL:
??? code
```python
from transformers import AutoProcessor
from vllm import LLM, SamplingParams
from qwen_vl_utils import process_vision_info
model_path = "Qwen/Qwen2.5-VL-3B-Instruct/"
video_path = "https://content.pexels.com/videos/free-videos.mp4"
llm = LLM(
model=model_path,
gpu_memory_utilization=0.8,
enforce_eager=True,
limit_mm_per_prompt={"video": 1},
)
sampling_params = SamplingParams(
max_tokens=1024,
)
video_messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": [
{"type": "text", "text": "describe this video."},
{
"type": "video",
"video": video_path,
"total_pixels": 20480 * 28 * 28,
"min_pixels": 16 * 28 * 28
}
]
},
]
messages = video_messages
processor = AutoProcessor.from_pretrained(model_path)
prompt = processor.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
image_inputs, video_inputs = process_vision_info(messages)
mm_data = {}
if video_inputs is not None:
mm_data["video"] = video_inputs
llm_inputs = {
"prompt": prompt,
"multi_modal_data": mm_data,
}
outputs = llm.generate([llm_inputs], sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
```
!!! note
'process_vision_info' is only applicable to Qwen2.5-VL and similar models.
Full example: <gh-file:examples/offline_inference/vision_language.py>
### Audio Inputs

View File

@ -6,6 +6,7 @@ Contents:
- [Supported Hardware](supported_hardware.md)
- [AutoAWQ](auto_awq.md)
- [AutoRound](auto_round.md)
- [BitsAndBytes](bnb.md)
- [BitBLAS](bitblas.md)
- [GGUF](gguf.md)

View File

@ -0,0 +1,103 @@
# AutoRound
[AutoRound](https://github.com/intel/auto-round) is Intels advanced quantization algorithm designed to produce highly efficient **INT2, INT3, INT4, and INT8**
quantized large language models—striking an optimal balance between accuracy and deployment performance.
AutoRound applies weight-only quantization to transformer-based models, enabling significant memory savings and faster
inference while maintaining near-original accuracy. It supports a wide range of hardware platforms, including **CPUs,
Intel GPUs, HPUs, and CUDA-enabled devices**.
Please refer to the [AutoRound guide](https://github.com/intel/auto-round/blob/main/docs/step_by_step.md) for more details.
Key Features:
**AutoRound, AutoAWQ, AutoGPTQ, and GGUF** are supported
**10+ vision-language models (VLMs)** are supported
**Per-layer mixed-bit quantization** for fine-grained control
**RTN (Round-To-Nearest) mode** for quick quantization with slight accuracy loss
**Multiple quantization recipes**: best, base, and light
✅ Advanced utilities such as immediate packing and support for **10+ backends**
## Installation
```bash
uv pip install auto-round
```
## Quantizing a model
For VLMs, please change to `auto-round-mllm` in CLI usage and `AutoRoundMLLM` in API usage.
### CLI usage
```bash
auto-round \
--model Qwen/Qwen3-0.6B \
--bits 4 \
--group_size 128 \
--format "auto_round" \
--output_dir ./tmp_autoround
```
```bash
auto-round \
--model Qwen/Qwen3-0.6B \
--format "gguf:q4_k_m" \
--output_dir ./tmp_autoround
```
### API usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from auto_round import AutoRound
model_name = "Qwen/Qwen3-0.6B"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
bits, group_size, sym = 4, 128, True
autoround = AutoRound(model, tokenizer, bits=bits, group_size=group_size, sym=sym)
# the best accuracy, 4-5X slower, low_gpu_mem_usage could save ~20G but ~30% slower
# autoround = AutoRound(model, tokenizer, nsamples=512, iters=1000, low_gpu_mem_usage=True, bits=bits, group_size=group_size, sym=sym)
# 2-3X speedup, slight accuracy drop at W4G128
# autoround = AutoRound(model, tokenizer, nsamples=128, iters=50, lr=5e-3, bits=bits, group_size=group_size, sym=sym )
output_dir = "./tmp_autoround"
# format= 'auto_round'(default), 'auto_gptq', 'auto_awq'
autoround.quantize_and_save(output_dir, format="auto_round")
```
## Running a quantized model with vLLM
Here is some example code to run auto-round format in vLLM:
```python
from vllm import LLM, SamplingParams
prompts = [
"Hello, my name is",
]
sampling_params = SamplingParams(temperature=0.6, top_p=0.95)
model_name = "Intel/DeepSeek-R1-0528-Qwen3-8B-int4-AutoRound"
llm = LLM(model=model_name)
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
```
# Acknowledgement
Special thanks to open-source low precision libraries such as AutoGPTQ, AutoAWQ, GPTQModel, Triton, Marlin, and
ExLLaMAV2 for providing low-precision CUDA kernels, which are leveraged in AutoRound.

View File

@ -5,7 +5,7 @@ vLLM now supports [BitBLAS](https://github.com/microsoft/BitBLAS) for more effic
!!! note
Ensure your hardware supports the selected `dtype` (`torch.bfloat16` or `torch.float16`).
Most recent NVIDIA GPUs support `float16`, while `bfloat16` is more common on newer architectures like Ampere or Hopper.
For details see [supported hardware](https://docs.vllm.ai/en/latest/features/quantization/supported_hardware.html).
For details see [supported hardware](supported_hardware.md).
Below are the steps to utilize BitBLAS with vLLM.

View File

@ -86,8 +86,9 @@ Load and run the model in `vllm`:
```python
from vllm import LLM
model = LLM("./Meta-Llama-3-8B-Instruct-FP8-Dynamic")
result = model.generate("Hello my name is")
llm = LLM("./Meta-Llama-3-8B-Instruct-FP8-Dynamic")
result = llm.generate("Hello my name is")
print(result[0].outputs[0].text)
```
@ -125,9 +126,10 @@ In this mode, all Linear modules (except for the final `lm_head`) have their wei
```python
from vllm import LLM
model = LLM("facebook/opt-125m", quantization="fp8")
llm = LLM("facebook/opt-125m", quantization="fp8")
# INFO 06-10 17:55:42 model_runner.py:157] Loading model weights took 0.1550 GB
result = model.generate("Hello, my name is")
result = llm.generate("Hello, my name is")
print(result[0].outputs[0].text)
```

View File

@ -108,7 +108,8 @@ After quantization, you can load and run the model in vLLM:
```python
from vllm import LLM
model = LLM("./Meta-Llama-3-8B-Instruct-W4A16-G128")
llm = LLM("./Meta-Llama-3-8B-Instruct-W4A16-G128")
```
To evaluate accuracy, you can use `lm_eval`:

View File

@ -114,7 +114,8 @@ After quantization, you can load and run the model in vLLM:
```python
from vllm import LLM
model = LLM("./Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token")
llm = LLM("./Meta-Llama-3-8B-Instruct-W8A8-Dynamic-Per-Token")
```
To evaluate accuracy, you can use `lm_eval`:

View File

@ -14,6 +14,7 @@ vLLM currently supports the following reasoning models:
| [QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) | `deepseek_r1` | `guided_json`, `guided_regex` | ✅ |
| [IBM Granite 3.2 language models](https://huggingface.co/collections/ibm-granite/granite-32-language-models-67b3bc8c13508f6d064cff9a) | `granite` | ❌ | ❌ |
| [Qwen3 series](https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f) | `qwen3` | `guided_json`, `guided_regex` | ✅ |
| [Hunyuan A13B series](https://huggingface.co/collections/tencent/hunyuan-a13b-685ec38e5b46321e3ea7c4be) | `hunyuan_a13b` | `guided_json`, `guided_regex` | ✅ |
!!! note
IBM Granite 3.2 reasoning is disabled by default; to enable it, you must also pass `thinking=True` in your `chat_template_kwargs`.

View File

@ -1,10 +1,10 @@
# Tool Calling
vLLM currently supports named function calling, as well as the `auto`, `required` (as of `vllm>=0.8.3`) and `none` options for the `tool_choice` field in the chat completion API.
vLLM currently supports named function calling, as well as the `auto`, `required` (as of `vllm>=0.8.3`), and `none` options for the `tool_choice` field in the chat completion API.
## Quickstart
Start the server with tool calling enabled. This example uses Meta's Llama 3.1 8B model, so we need to use the llama3 tool calling chat template from the vLLM examples directory:
Start the server with tool calling enabled. This example uses Meta's Llama 3.1 8B model, so we need to use the `llama3_json` tool calling chat template from the vLLM examples directory:
```bash
vllm serve meta-llama/Llama-3.1-8B-Instruct \
@ -13,7 +13,7 @@ vllm serve meta-llama/Llama-3.1-8B-Instruct \
--chat-template examples/tool_chat_template_llama3.1_json.jinja
```
Next, make a request to the model that should result in it using the available tools:
Next, make a request that triggers the model to use the available tools:
??? code
@ -73,7 +73,7 @@ This example demonstrates:
You can also specify a particular function using named function calling by setting `tool_choice={"type": "function", "function": {"name": "get_weather"}}`. Note that this will use the guided decoding backend - so the first time this is used, there will be several seconds of latency (or more) as the FSM is compiled for the first time before it is cached for subsequent requests.
Remember that it's the callers responsibility to:
Remember that it's the caller's responsibility to:
1. Define appropriate tools in the request
2. Include relevant context in the chat messages
@ -84,7 +84,7 @@ For more advanced usage, including parallel tool calls and different model-speci
## Named Function Calling
vLLM supports named function calling in the chat completion API by default. It does so using Outlines through guided decoding, so this is
enabled by default, and will work with any supported model. You are guaranteed a validly-parsable function call - not a
enabled by default and will work with any supported model. You are guaranteed a validly-parsable function call - not a
high-quality one.
vLLM will use guided decoding to ensure the response matches the tool parameter object defined by the JSON schema in the `tools` parameter.
@ -95,7 +95,7 @@ specify the `name` of one of the tools in the `tool_choice` parameter of the cha
## Required Function Calling
vLLM supports the `tool_choice='required'` option in the chat completion API. Similar to the named function calling, it also uses guided decoding, so this is enabled by default and will work with any supported model. The required guided decoding features (JSON schema with `anyOf`) are currently only supported in the V0 engine with the guided decoding backend `outlines`. However, support for alternative decoding backends are on the [roadmap](https://docs.vllm.ai/en/latest/usage/v1_guide.html#feature-model) for the V1 engine.
vLLM supports the `tool_choice='required'` option in the chat completion API. Similar to the named function calling, it also uses guided decoding, so this is enabled by default and will work with any supported model. The guided decoding features for `tool_choice='required'` (such as JSON schema with `anyOf`) are currently only supported in the V0 engine with the guided decoding backend `outlines`. However, support for alternative decoding backends are on the [roadmap](../usage/v1_guide.md#features) for the V1 engine.
When tool_choice='required' is set, the model is guaranteed to generate one or more tool calls based on the specified tool list in the `tools` parameter. The number of tool calls depends on the user's query. The output format strictly follows the schema defined in the `tools` parameter.
@ -103,22 +103,23 @@ When tool_choice='required' is set, the model is guaranteed to generate one or m
vLLM supports the `tool_choice='none'` option in the chat completion API. When this option is set, the model will not generate any tool calls and will respond with regular text content only, even if tools are defined in the request.
However, when `tool_choice='none'` is specified, vLLM includes tool definitions from the prompt.
!!! note
When tools are specified in the request, vLLM includes tool definitions in the prompt by default, regardless of the `tool_choice` setting. To exclude tool definitions when `tool_choice='none'`, use the `--exclude-tools-when-tool-choice-none` option.
## Automatic Function Calling
To enable this feature, you should set the following flags:
* `--enable-auto-tool-choice` -- **mandatory** Auto tool choice. tells vLLM that you want to enable the model to generate its own tool calls when it
* `--enable-auto-tool-choice` -- **mandatory** Auto tool choice. It tells vLLM that you want to enable the model to generate its own tool calls when it
deems appropriate.
* `--tool-call-parser` -- select the tool parser to use (listed below). Additional tool parsers
will continue to be added in the future, and also can register your own tool parsers in the `--tool-parser-plugin`.
will continue to be added in the future. You can also register your own tool parsers in the `--tool-parser-plugin`.
* `--tool-parser-plugin` -- **optional** tool parser plugin used to register user defined tool parsers into vllm, the registered tool parser name can be specified in `--tool-call-parser`.
* `--chat-template` -- **optional** for auto tool choice. the path to the chat template which handles `tool`-role messages and `assistant`-role messages
* `--chat-template` -- **optional** for auto tool choice. It's the path to the chat template which handles `tool`-role messages and `assistant`-role messages
that contain previously generated tool calls. Hermes, Mistral and Llama models have tool-compatible chat templates in their
`tokenizer_config.json` files, but you can specify a custom template. This argument can be set to `tool_use` if your model has a tool use-specific chat
template configured in the `tokenizer_config.json`. In this case, it will be used per the `transformers` specification. More on this [here](https://huggingface.co/docs/transformers/en/chat_templating#why-do-some-models-have-multiple-templates)
from HuggingFace; and you can find an example of this in a `tokenizer_config.json` [here](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B/blob/main/tokenizer_config.json)
from HuggingFace; and you can find an example of this in a `tokenizer_config.json` [here](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B/blob/main/tokenizer_config.json).
If your favorite tool-calling model is not supported, please feel free to contribute a parser & tool use chat template!
@ -130,7 +131,7 @@ All Nous Research Hermes-series models newer than Hermes 2 Pro should be support
* `NousResearch/Hermes-2-Theta-*`
* `NousResearch/Hermes-3-*`
_Note that the Hermes 2 **Theta** models are known to have degraded tool call quality & capabilities due to the merge
_Note that the Hermes 2 **Theta** models are known to have degraded tool call quality and capabilities due to the merge
step in their creation_.
Flags: `--tool-call-parser hermes`
@ -146,13 +147,13 @@ Known issues:
1. Mistral 7B struggles to generate parallel tool calls correctly.
2. Mistral's `tokenizer_config.json` chat template requires tool call IDs that are exactly 9 digits, which is
much shorter than what vLLM generates. Since an exception is thrown when this condition
is not met, the following additional chat templates are provided:
much shorter than what vLLM generates. Since an exception is thrown when this condition
is not met, the following additional chat templates are provided:
* <gh-file:examples/tool_chat_template_mistral.jinja> - this is the "official" Mistral chat template, but tweaked so that
it works with vLLM's tool call IDs (provided `tool_call_id` fields are truncated to the last 9 digits)
* <gh-file:examples/tool_chat_template_mistral_parallel.jinja> - this is a "better" version that adds a tool-use system prompt
when tools are provided, that results in much better reliability when working with parallel tool calling.
* <gh-file:examples/tool_chat_template_mistral.jinja> - this is the "official" Mistral chat template, but tweaked so that
it works with vLLM's tool call IDs (provided `tool_call_id` fields are truncated to the last 9 digits)
* <gh-file:examples/tool_chat_template_mistral_parallel.jinja> - this is a "better" version that adds a tool-use system prompt
when tools are provided, that results in much better reliability when working with parallel tool calling.
Recommended flags: `--tool-call-parser mistral --chat-template examples/tool_chat_template_mistral_parallel.jinja`
@ -166,17 +167,17 @@ All Llama 3.1, 3.2 and 4 models should be supported.
* `meta-llama/Llama-3.2-*`
* `meta-llama/Llama-4-*`
The tool calling that is supported is the [JSON based tool calling](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#json-based-tool-calling). For [pythonic tool calling](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/text_prompt_format.md#zero-shot-function-calling) introduced by the Llama-3.2 models, see the `pythonic` tool parser below. As for llama 4 models, it is recommended to use the `llama4_pythonic` tool parser.
The tool calling that is supported is the [JSON-based tool calling](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/#json-based-tool-calling). For [pythonic tool calling](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/text_prompt_format.md#zero-shot-function-calling) introduced by the Llama-3.2 models, see the `pythonic` tool parser below. As for Llama 4 models, it is recommended to use the `llama4_pythonic` tool parser.
Other tool calling formats like the built in python tool calling or custom tool calling are not supported.
Known issues:
1. Parallel tool calls are not supported for llama 3, but it is supported in llama 4 models.
2. The model can generate parameters with a wrong format, such as generating
1. Parallel tool calls are not supported for Llama 3, but it is supported in Llama 4 models.
2. The model can generate parameters in an incorrect format, such as generating
an array serialized as string instead of an array.
VLLM provides two JSON based chat templates for Llama 3.1 and 3.2:
VLLM provides two JSON-based chat templates for Llama 3.1 and 3.2:
* <gh-file:examples/tool_chat_template_llama3.1_json.jinja> - this is the "official" chat template for the Llama 3.1
models, but tweaked so that it works better with vLLM.
@ -185,7 +186,8 @@ images.
Recommended flags: `--tool-call-parser llama3_json --chat-template {see_above}`
VLLM also provides a pythonic and JSON based chat template for Llama 4, but pythonic tool calling is recommended:
VLLM also provides a pythonic and JSON-based chat template for Llama 4, but pythonic tool calling is recommended:
* <gh-file:examples/tool_chat_template_llama4_pythonic.jinja> - this is based on the [official chat template](https://www.llama.com/docs/model-cards-and-prompt-formats/llama4/) for the Llama 4 models.
For Llama 4 model, use `--tool-call-parser llama4_pythonic --chat-template examples/tool_chat_template_llama4_pythonic.jinja`.
@ -196,21 +198,21 @@ Supported models:
* `ibm-granite/granite-3.0-8b-instruct`
Recommended flags: `--tool-call-parser granite --chat-template examples/tool_chat_template_granite.jinja`
Recommended flags: `--tool-call-parser granite --chat-template examples/tool_chat_template_granite.jinja`
<gh-file:examples/tool_chat_template_granite.jinja>: this is a modified chat template from the original on Huggingface. Parallel function calls are supported.
<gh-file:examples/tool_chat_template_granite.jinja>: this is a modified chat template from the original on Hugging Face. Parallel function calls are supported.
* `ibm-granite/granite-3.1-8b-instruct`
Recommended flags: `--tool-call-parser granite`
Recommended flags: `--tool-call-parser granite`
The chat template from Huggingface can be used directly. Parallel function calls are supported.
The chat template from Huggingface can be used directly. Parallel function calls are supported.
* `ibm-granite/granite-20b-functioncalling`
Recommended flags: `--tool-call-parser granite-20b-fc --chat-template examples/tool_chat_template_granite_20b_fc.jinja`
Recommended flags: `--tool-call-parser granite-20b-fc --chat-template examples/tool_chat_template_granite_20b_fc.jinja`
<gh-file:examples/tool_chat_template_granite_20b_fc.jinja>: this is a modified chat template from the original on Huggingface, which is not vLLM compatible. It blends function description elements from the Hermes template and follows the same system prompt as "Response Generation" mode from [the paper](https://arxiv.org/abs/2407.00121). Parallel function calls are supported.
<gh-file:examples/tool_chat_template_granite_20b_fc.jinja>: this is a modified chat template from the original on Hugging Face, which is not vLLM-compatible. It blends function description elements from the Hermes template and follows the same system prompt as "Response Generation" mode from [the paper](https://arxiv.org/abs/2407.00121). Parallel function calls are supported.
### InternLM Models (`internlm`)
@ -246,10 +248,12 @@ The xLAM tool parser is designed to support models that generate tool calls in v
Parallel function calls are supported, and the parser can effectively separate text content from tool calls.
Supported models:
* Salesforce Llama-xLAM models: `Salesforce/Llama-xLAM-2-8B-fc-r`, `Salesforce/Llama-xLAM-2-70B-fc-r`
* Qwen-xLAM models: `Salesforce/xLAM-1B-fc-r`, `Salesforce/xLAM-3B-fc-r`, `Salesforce/Qwen-xLAM-32B-fc-r`
Flags:
* For Llama-based xLAM models: `--tool-call-parser xlam --chat-template examples/tool_chat_template_xlam_llama.jinja`
* For Qwen-based xLAM models: `--tool-call-parser xlam --chat-template examples/tool_chat_template_xlam_qwen.jinja`
@ -288,6 +292,17 @@ Supported models:
Flags: `--tool-call-parser kimi_k2`
### Hunyuan Models (`hunyuan_a13b`)
Supported models:
* `tencent/Hunyuan-A13B-Instruct` (The chat template is already included in the Hugging Face model files.)
Flags:
* For non-reasoning: `--tool-call-parser hunyuan_a13b`
* For reasoning: `--tool-call-parser hunyuan_a13b --reasoning-parser hunyuan_a13b --enable_reasoning`
### Models with Pythonic Tool Calls (`pythonic`)
A growing number of models output a python list to represent tool calls instead of using JSON. This has the advantage of inherently supporting parallel tool calls and removing ambiguity around the JSON schema required for tool calls. The `pythonic` tool parser can support such models.
@ -315,9 +330,9 @@ Example supported models:
Flags: `--tool-call-parser pythonic --chat-template {see_above}`
!!! warning
Llama's smaller models frequently fail to emit tool calls in the correct format. Your mileage may vary.
Llama's smaller models frequently fail to emit tool calls in the correct format. Results may vary depending on the model.
## How to write a tool parser plugin
## How to Write a Tool Parser Plugin
A tool parser plugin is a Python file containing one or more ToolParser implementations. You can write a ToolParser similar to the `Hermes2ProToolParser` in <gh-file:vllm/entrypoints/openai/tool_parsers/hermes_tool_parser.py>.

View File

@ -94,8 +94,8 @@ Currently, there are no pre-built CPU wheels.
## Related runtime environment variables
- `VLLM_CPU_KVCACHE_SPACE`: specify the KV Cache size (e.g, `VLLM_CPU_KVCACHE_SPACE=40` means 40 GiB space for KV cache), larger setting will allow vLLM running more requests in parallel. This parameter should be set based on the hardware configuration and memory management pattern of users. Default value is `0`.
- `VLLM_CPU_OMP_THREADS_BIND`: specify the CPU cores dedicated to the OpenMP threads. For example, `VLLM_CPU_OMP_THREADS_BIND=0-31` means there will be 32 OpenMP threads bound on 0-31 CPU cores. `VLLM_CPU_OMP_THREADS_BIND=0-31|32-63` means there will be 2 tensor parallel processes, 32 OpenMP threads of rank0 are bound on 0-31 CPU cores, and the OpenMP threads of rank1 are bound on 32-63 CPU cores. By setting to `auto`, the OpenMP threads of each rank are bound to the CPU cores in each NUMA node. By setting to `all`, the OpenMP threads of each rank uses all CPU cores available on the system. Default value is `auto`.
- `VLLM_CPU_NUM_OF_RESERVED_CPU`: specify the number of CPU cores which are not dedicated to the OpenMP threads for each rank. The variable only takes effect when VLLM_CPU_OMP_THREADS_BIND is set to `auto`. Default value is `0`.
- `VLLM_CPU_OMP_THREADS_BIND`: specify the CPU cores dedicated to the OpenMP threads, can be set as CPU id lists or `auto` (by default). For example, `VLLM_CPU_OMP_THREADS_BIND=0-31` means there will be 32 OpenMP threads bound on 0-31 CPU cores. `VLLM_CPU_OMP_THREADS_BIND=0-31|32-63` means there will be 2 tensor parallel processes, 32 OpenMP threads of rank0 are bound on 0-31 CPU cores, and the OpenMP threads of rank1 are bound on 32-63 CPU cores. By setting to `auto`, the OpenMP threads of each rank are bound to the CPU cores in each NUMA node respectively.
- `VLLM_CPU_NUM_OF_RESERVED_CPU`: specify the number of CPU cores which are not dedicated to the OpenMP threads for each rank. The variable only takes effect when VLLM_CPU_OMP_THREADS_BIND is set to `auto`. Default value is `None`. If the value is not set and use `auto` thread binding, no CPU will be reserved for `world_size == 1`, 1 CPU per rank will be reserved for `world_size > 1`.
- `VLLM_CPU_MOE_PREPACK` (x86 only): whether to use prepack for MoE layer. This will be passed to `ipex.llm.modules.GatedMLPMOE`. Default is `1` (True). On unsupported CPUs, you might need to set this to `0` (False).
- `VLLM_CPU_SGL_KERNEL` (x86 only, Experimental): whether to use small-batch optimized kernels for linear layer and MoE layer, especially for low-latency requirements like online serving. The kernels require AMX instruction set, BFloat16 weight type and weight shapes divisible by 32. Default is `0` (False).
@ -123,9 +123,13 @@ export VLLM_CPU_NUM_OF_RESERVED_CPU=1
vllm serve facebook/opt-125m --dtype=bfloat16
```
Note, it is recommended to manually reserve 1 CPU for vLLM front-end process when `world_size == 1`.
### How to decide `VLLM_CPU_OMP_THREADS_BIND`?
- Bind each OpenMP thread to a dedicated physical CPU core respectively, or use auto thread binding feature by default. On a hyper-threading enabled platform with 16 logical CPU cores / 8 physical CPU cores:
- Default `auto` thread-binding is recommended for most cases. Ideally, each OpenMP thread will be bound to a dedicated physical core respectively, threads of each rank will be bound to a same NUMA node respectively, and 1 CPU per rank will be reserved for other vLLM components when `world_size > 1`. If have any performance problems or unexpected binding behaviours, please try to bind threads as following.
- On a hyper-threading enabled platform with 16 logical CPU cores / 8 physical CPU cores:
??? console "Commands"
@ -162,6 +166,21 @@ vllm serve facebook/opt-125m --dtype=bfloat16
- This value is 4GB by default. Larger space can support more concurrent requests, longer context length. However, users should take care of memory capacity of each NUMA node. The memory usage of each TP rank is the sum of `weight shard size` and `VLLM_CPU_KVCACHE_SPACE`, if it exceeds the capacity of a single NUMA node, the TP worker will be killed with `exitcode 9` due to out-of-memory.
### How to do performance tuning for vLLM CPU?
First of all, please make sure the thread-binding and KV cache space are properly set and take effect. You can check the thread-binding by running a vLLM benchmark and observing CPU cores usage via `htop`.
Inference batch size is a important parameter for the performance. Larger batch usually provides higher throughput, smaller batch provides lower latency. Tuning max batch size starts from default value to balance throughput and latency is an effective way to improve vLLM CPU performance on specific platforms. There are two important related parameters in vLLM:
- `--max-num-batched-tokens`, defines the limit of token numbers in a single batch, has more impacts on the first token performance. The default value is set as:
- Offline Inference: `4096 * world_size`
- Online Serving: `2048 * world_size`
- `--max-num-seqs`, defines the limit of sequence numbers in a single batch, has more impacts on the output token performance.
- Offline Inference: `256 * world_size`
- Online Serving: `128 * world_size`
vLLM CPU supports tensor parallel (TP) and pipeline parallel (PP) to leverage multiple CPU sockets and memory nodes. For more detials of tuning TP and PP, please refer to [Optimization and Tuning](../../configuration/optimization.md). For vLLM CPU, it is recommend to use TP and PP togther if there are enough CPU sockets and memory nodes.
### Which quantization configs does vLLM CPU support?
- vLLM CPU supports quantizations:

View File

@ -33,7 +33,7 @@ Testing has been conducted on AWS Graviton3 instances for compatibility.
# --8<-- [end:pre-built-images]
# --8<-- [start:build-image-from-source]
```bash
docker build -f docker/Dockerfile.arm \
docker build -f docker/Dockerfile.cpu \
--tag vllm-cpu-env .
# Launching OpenAI server

View File

@ -37,7 +37,7 @@ information, see [Storage options for Cloud TPU data](https://cloud.devsite.corp
- Google Cloud TPU VM
- TPU versions: v6e, v5e, v5p, v4
- Python: 3.10 or newer
- Python: 3.11 or newer
### Provision Cloud TPUs
@ -117,7 +117,7 @@ source ~/.bashrc
Create and activate a Conda environment for vLLM:
```bash
conda create -n vllm python=3.10 -y
conda create -n vllm python=3.12 -y
conda activate vllm
```

View File

@ -5,9 +5,98 @@ vLLM model tensors that have been serialized to disk, an HTTP/HTTPS endpoint, or
at runtime extremely quickly directly to the GPU, resulting in significantly
shorter Pod startup times and CPU memory usage. Tensor encryption is also supported.
For more information on CoreWeave's Tensorizer, please refer to
[CoreWeave's Tensorizer documentation](https://github.com/coreweave/tensorizer). For more information on serializing a vLLM model, as well a general usage guide to using Tensorizer with vLLM, see
the [vLLM example script](https://docs.vllm.ai/en/latest/examples/others/tensorize_vllm_model.html).
vLLM fully integrates Tensorizer in to its model loading machinery. The following will give a brief overview on how to get started with using Tensorizer on vLLM.
!!! note
Note that to use this feature you will need to install `tensorizer` by running `pip install vllm[tensorizer]`.
## Installing Tensorizer
To install `tensorizer`, run `pip install vllm[tensorizer]`.
## The basics
To load a model using Tensorizer, the model first needs to be serialized by
Tensorizer. [The example script](../../examples/others/tensorize_vllm_model.md) takes care of this process.
Let's walk through a basic example by serializing `facebook/opt-125m` using the script, and then loading it for inference.
## Serializing a vLLM model with Tensorizer
To serialize a model with Tensorizer, call the example script with the necessary
CLI arguments. The docstring for the script itself explains the CLI args
and how to use it properly in great detail, and we'll use one of the examples from the docstring directly, assuming we want to serialize and save our model at our S3 bucket example `s3://my-bucket`:
```bash
python examples/others/tensorize_vllm_model.py \
--model facebook/opt-125m \
serialize \
--serialized-directory s3://my-bucket \
--suffix v1
```
This saves the model tensors at `s3://my-bucket/vllm/facebook/opt-125m/v1`. If you intend on applying a LoRA adapter to your tensorized model, you can pass the HF id of the LoRA adapter in the above command, and the artifacts will be saved there too:
```bash
python examples/others/tensorize_vllm_model.py \
--model facebook/opt-125m \
--lora-path <lora_id> \
serialize \
--serialized-directory s3://my-bucket \
--suffix v1
```
## Serving the model using Tensorizer
Once the model is serialized where you want it, you can load the model using `vllm serve` or the `LLM` entrypoint. You can pass the directory where you saved the model to the `model` argument for `LLM()` and `vllm serve`. For example, to serve the tensorized model saved previously with the LoRA adapter, you'd do:
```bash
vllm serve s3://my-bucket/vllm/facebook/opt-125m/v1 \
--load-format tensorizer \
--enable-lora
```
Or, with `LLM()`:
```python
from vllm import LLM
llm = LLM(
"s3://my-bucket/vllm/facebook/opt-125m/v1",
load_format="tensorizer",
enable_lora=True
)
```
## Options for configuring Tensorizer
`tensorizer`'s core objects that serialize and deserialize models are `TensorSerializer` and `TensorDeserializer` respectively. In order to pass arbitrary kwargs to these, which will configure the serialization and deserialization processes, you can provide them as keys to `model_loader_extra_config` with `serialization_kwargs` and `deserialization_kwargs` respectively. Full docstrings detailing all parameters for the aforementioned objects can be found in `tensorizer`'s [serialization.py](https://github.com/coreweave/tensorizer/blob/main/tensorizer/serialization.py) file.
As an example, CPU concurrency can be limited when serializing with `tensorizer` via the `limit_cpu_concurrency` parameter in the initializer for `TensorSerializer`. To set `limit_cpu_concurrency` to some arbitrary value, you would do so like this when serializing:
```bash
python examples/others/tensorize_vllm_model.py \
--model facebook/opt-125m \
--lora-path <lora_id> \
serialize \
--serialized-directory s3://my-bucket \
--serialization-kwargs '{"limit_cpu_concurrency": 2}' \
--suffix v1
```
As an example when customizing the loading process via `TensorDeserializer`, you could limit the number of concurrency readers during deserialization with the `num_readers` parameter in the initializer via `model_loader_extra_config` like so:
```bash
vllm serve s3://my-bucket/vllm/facebook/opt-125m/v1 \
--load-format tensorizer \
--enable-lora \
--model-loader-extra-config '{"deserialization_kwargs": {"num_readers": 2}}'
```
Or with `LLM()`:
```python
from vllm import LLM
llm = LLM(
"s3://my-bucket/vllm/facebook/opt-125m/v1",
load_format="tensorizer",
enable_lora=True,
model_loader_extra_config={"deserialization_kwargs": {"num_readers": 2}}
)
```

View File

@ -11,26 +11,51 @@ before returning them.
As shown in the [Compatibility Matrix](../features/compatibility_matrix.md), most vLLM features are not applicable to
pooling models as they only work on the generation or decode stage, so performance may not improve as much.
For pooling models, we support the following `--task` options.
The selected option sets the default pooler used to extract the final hidden states:
If the model doesn't implement this interface, you can set `--task` which tells vLLM
to convert the model into a pooling model.
| Task | Pooling Type | Normalization | Softmax |
|---------------------------------|----------------|-----------------|-----------|
| Embedding (`embed`) | `LAST` | ✅︎ | ❌ |
| Classification (`classify`) | `LAST` | ❌ | ✅︎ |
| Sentence Pair Scoring (`score`) | \* | \* | \* |
| `--task` | Model type | Supported pooling tasks |
|------------|----------------------|-------------------------------|
| `embed` | Embedding model | `encode`, `embed` |
| `classify` | Classification model | `encode`, `classify`, `score` |
| `reward` | Reward model | `encode` |
\*The default pooler is always defined by the model.
## Pooling Tasks
!!! note
If the model's implementation in vLLM defines its own pooler, the default pooler is set to that instead of the one specified in this table.
In vLLM, we define the following pooling tasks and corresponding APIs:
| Task | APIs |
|------------|--------------------|
| `encode` | `encode` |
| `embed` | `embed`, `score`\* |
| `classify` | `classify` |
| `score` | `score` |
\*The `score` API falls back to `embed` task if the model does not support `score` task.
Each pooling model in vLLM supports one or more of these tasks according to [Pooler.get_supported_tasks][vllm.model_executor.layers.Pooler.get_supported_tasks].
By default, the pooler assigned to each task has the following attributes:
| Task | Pooling Type | Normalization | Softmax |
|------------|----------------|---------------|---------|
| `encode` | `ALL` | ❌ | ❌ |
| `embed` | `LAST` | ✅︎ | ❌ |
| `classify` | `LAST` | ❌ | ✅︎ |
These defaults may be overridden by the model's implementation in vLLM.
When loading [Sentence Transformers](https://huggingface.co/sentence-transformers) models,
we attempt to override the default pooler based on its Sentence Transformers configuration file (`modules.json`).
we attempt to override the defaults based on its Sentence Transformers configuration file (`modules.json`),
which takes priority over the model's defaults.
!!! tip
You can customize the model's pooling method via the `--override-pooler-config` option,
which takes priority over both the model's and Sentence Transformers's defaults.
You can further customize this via the `--override-pooler-config` option,
which takes priority over both the model's and Sentence Transformers's defaults.
!!! note
The above configuration may be disregarded if the model's implementation in vLLM defines its own pooler
that is not based on [PoolerConfig][vllm.config.PoolerConfig].
## Offline Inference
@ -149,11 +174,11 @@ You can change the output dimensions of embedding models that support Matryoshka
```python
from vllm import LLM, PoolingParams
model = LLM(model="jinaai/jina-embeddings-v3",
task="embed",
trust_remote_code=True)
outputs = model.embed(["Follow the white rabbit."],
pooling_params=PoolingParams(dimensions=32))
llm = LLM(model="jinaai/jina-embeddings-v3",
task="embed",
trust_remote_code=True)
outputs = llm.embed(["Follow the white rabbit."],
pooling_params=PoolingParams(dimensions=32))
print(outputs[0].outputs)
```

View File

@ -18,7 +18,7 @@ These models are what we list in [supported-text-models][supported-text-models]
### Transformers
vLLM also supports model implementations that are available in Transformers. This does not currently work for all models, but most decoder language models are supported, and vision language model support is planned!
vLLM also supports model implementations that are available in Transformers. This does not currently work for all models, but most decoder language models and common vision language models are supported! Vision-language models currently accept only image inputs. Support for video inputs will be added in future releases.
To check if the modeling backend is Transformers, you can simply do this:
@ -28,7 +28,7 @@ llm = LLM(model=..., task="generate") # Name or path of your model
llm.apply_model(lambda model: print(type(model)))
```
If it is `TransformersForCausalLM` then it means it's based on Transformers!
If it is `TransformersForCausalLM` or `TransformersForMultimodalLM` then it means it's based on Transformers!
!!! tip
You can force the use of `TransformersForCausalLM` by setting `model_impl="transformers"` for [offline-inference](../serving/offline_inference.md) or `--model-impl transformers` for the [openai-compatible-server](../serving/openai_compatible_server.md).
@ -36,6 +36,9 @@ If it is `TransformersForCausalLM` then it means it's based on Transformers!
!!! note
vLLM may not fully optimise the Transformers implementation so you may see degraded performance if comparing a native model to a Transformers model in vLLM.
!!! note
In case of vision language models if you are loading with `dtype="auto"`, vLLM loads the whole model with config's `dtype` if it exists. In contrast the native Transformers will respect the `dtype` attribute of each backbone in the model. That might cause a slight difference in performance.
#### Custom models
If a model is neither supported natively by vLLM or Transformers, it can still be used in vLLM!
@ -99,7 +102,7 @@ Here is what happens in the background when this model is loaded:
1. The config is loaded.
2. `MyModel` Python class is loaded from the `auto_map` in config, and we check that the model `is_backend_compatible()`.
3. `MyModel` is loaded into `TransformersForCausalLM` (see <gh-file:vllm/model_executor/models/transformers.py>) which sets `self.config._attn_implementation = "vllm"` so that vLLM's attention layer is used.
3. `MyModel` is loaded into `TransformersForCausalLM` or `TransformersForMultimodalLM` (see <gh-file:vllm/model_executor/models/transformers.py>) which sets `self.config._attn_implementation = "vllm"` so that vLLM's attention layer is used.
That's it!
@ -311,12 +314,20 @@ See [this page](generative_models.md) for more information on how to use generat
Specified using `--task generate`.
<style>
th {
white-space: nowrap;
min-width: 0 !important;
}
</style>
| Architecture | Models | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/distributed_serving.md) | [V1](gh-issue:8779) |
|--------------|--------|-------------------|----------------------|---------------------------|---------------------|
| `AquilaForCausalLM` | Aquila, Aquila2 | `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `ArceeForCausalLM` | Arcee (AFM) | `arcee-ai/AFM-4.5B-Base`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `ArcticForCausalLM` | Arctic | `Snowflake/snowflake-arctic-base`, `Snowflake/snowflake-arctic-instruct`, etc. | | ✅︎ | ✅︎ |
| `BaiChuanForCausalLM` | Baichuan2, Baichuan | `baichuan-inc/Baichuan2-13B-Chat`, `baichuan-inc/Baichuan-7B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `BailingMoeForCausalLM` | Ling | `inclusionAI/Ling-lite-1.5`, `inclusionAI/Ling-plus`, etc. | | ✅︎ | ✅︎ |
| `BailingMoeForCausalLM` | Ling | `inclusionAI/Ling-lite-1.5`, `inclusionAI/Ling-plus`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `BambaForCausalLM` | Bamba | `ibm-ai-platform/Bamba-9B-fp8`, `ibm-ai-platform/Bamba-9B` | ✅︎ | ✅︎ | ✅︎ |
| `BloomForCausalLM` | BLOOM, BLOOMZ, BLOOMChat | `bigscience/bloom`, `bigscience/bloomz`, etc. | | ✅︎ | |
| `BartForConditionalGeneration` | BART | `facebook/bart-base`, `facebook/bart-large-cnn`, etc. | | | |
@ -328,9 +339,11 @@ Specified using `--task generate`.
| `DeepseekV2ForCausalLM` | DeepSeek-V2 | `deepseek-ai/DeepSeek-V2`, `deepseek-ai/DeepSeek-V2-Chat`, etc. | | ✅︎ | ✅︎ |
| `DeepseekV3ForCausalLM` | DeepSeek-V3 | `deepseek-ai/DeepSeek-V3-Base`, `deepseek-ai/DeepSeek-V3`, etc. | | ✅︎ | ✅︎ |
| `Dots1ForCausalLM` | dots.llm1 | `rednote-hilab/dots.llm1.base`, `rednote-hilab/dots.llm1.inst`, etc. | | ✅︎ | ✅︎ |
| `Ernie4_5_ForCausalLM` | Ernie4.5 | `baidu/ERNIE-4.5-0.3B-PT`, etc. | | ✅︎ | ✅︎ |
| `Ernie4_5_MoeForCausalLM` | Ernie4.5MoE | `baidu/ERNIE-4.5-21B-A3B-PT`, `baidu/ERNIE-4.5-300B-A47B-PT`, etc. | | ✅︎ | ✅︎ |
| `Ernie4_5_ForCausalLM` | Ernie4.5 | `baidu/ERNIE-4.5-0.3B-PT`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Ernie4_5_MoeForCausalLM` | Ernie4.5MoE | `baidu/ERNIE-4.5-21B-A3B-PT`, `baidu/ERNIE-4.5-300B-A47B-PT`, etc. |✅︎| ✅︎ | ✅︎ |
| `ExaoneForCausalLM` | EXAONE-3 | `LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Exaone4ForCausalLM` | EXAONE-4 | `LGAI-EXAONE/EXAONE-4.0-32B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Fairseq2LlamaForCausalLM` | Llama (fairseq2 format) | `mgleize/fairseq2-dummy-Llama-3.2-1B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `FalconForCausalLM` | Falcon | `tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc. | | ✅︎ | ✅︎ |
| `FalconMambaForCausalLM` | FalconMamba | `tiiuae/falcon-mamba-7b`, `tiiuae/falcon-mamba-7b-instruct`, etc. | | ✅︎ | ✅︎ |
| `FalconH1ForCausalLM` | Falcon-H1 | `tiiuae/Falcon-H1-34B-Base`, `tiiuae/Falcon-H1-34B-Instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -350,7 +363,9 @@ Specified using `--task generate`.
| `GraniteMoeSharedForCausalLM` | Granite MoE Shared | `ibm-research/moe-7b-1b-active-shared-experts` (test model) | ✅︎ | ✅︎ | ✅︎ |
| `GritLM` | GritLM | `parasail-ai/GritLM-7B-vllm`. | ✅︎ | ✅︎ | |
| `Grok1ModelForCausalLM` | Grok1 | `hpcai-tech/grok-1`. | ✅︎ | ✅︎ | ✅︎ |
| `HunYuanMoEV1ForCausalLM` | Hunyuan-80B-A13B | `tencent/Hunyuan-A13B-Instruct`, `tencent/Hunyuan-A13B-Pretrain`, `tencent/Hunyuan-A13B-Instruct-FP8`, etc. | | | ✅︎ |
| `HunYuanDenseV1ForCausalLM` | Hunyuan-7B-Instruct-0124 | `tencent/Hunyuan-7B-Instruct-0124` | ✅︎ | | ✅︎ |
| `HunYuanMoEV1ForCausalLM` | Hunyuan-80B-A13B | `tencent/Hunyuan-A13B-Instruct`, `tencent/Hunyuan-A13B-Pretrain`, `tencent/Hunyuan-A13B-Instruct-FP8`, etc. | ✅︎ | | ✅︎ |
| `HCXVisionForCausalLM` | HyperCLOVAX-SEED-Vision-Instruct-3B | `naver-hyperclovax/HyperCLOVAX-SEED-Vision-Instruct-3B` | | | ✅︎ |
| `InternLMForCausalLM` | InternLM | `internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `InternLM2ForCausalLM` | InternLM2 | `internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `InternLM3ForCausalLM` | InternLM3 | `internlm/internlm3-8b-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -359,6 +374,7 @@ Specified using `--task generate`.
| `LlamaForCausalLM` | Llama 3.1, Llama 3, Llama 2, LLaMA, Yi | `meta-llama/Meta-Llama-3.1-405B-Instruct`, `meta-llama/Meta-Llama-3.1-70B`, `meta-llama/Meta-Llama-3-70B-Instruct`, `meta-llama/Llama-2-70b-hf`, `01-ai/Yi-34B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MambaForCausalLM` | Mamba | `state-spaces/mamba-130m-hf`, `state-spaces/mamba-790m-hf`, `state-spaces/mamba-2.8b-hf`, etc. | | ✅︎ | |
| `Mamba2ForCausalLM` | Mamba2 | `mistralai/Mamba-Codestral-7B-v0.1`, etc. | | ✅︎ | ✅︎ |
| `MiMoForCausalLM` | MiMo | `XiaomiMiMo/MiMo-7B-RL`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MiniCPMForCausalLM` | MiniCPM | `openbmb/MiniCPM-2B-sft-bf16`, `openbmb/MiniCPM-2B-dpo-bf16`, `openbmb/MiniCPM-S-1B-sft`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MiniCPM3ForCausalLM` | MiniCPM3 | `openbmb/MiniCPM3-4B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `MistralForCausalLM` | Mistral, Mistral-Instruct | `mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -373,16 +389,15 @@ Specified using `--task generate`.
| `OrionForCausalLM` | Orion | `OrionStarAI/Orion-14B-Base`, `OrionStarAI/Orion-14B-Chat`, etc. | | ✅︎ | ✅︎ |
| `PhiForCausalLM` | Phi | `microsoft/phi-1_5`, `microsoft/phi-2`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi3ForCausalLM` | Phi-4, Phi-3 | `microsoft/Phi-4-mini-instruct`, `microsoft/Phi-4`, `microsoft/Phi-3-mini-4k-instruct`, `microsoft/Phi-3-mini-128k-instruct`, `microsoft/Phi-3-medium-128k-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi3SmallForCausalLM` | Phi-3-Small | `microsoft/Phi-3-small-8k-instruct`, `microsoft/Phi-3-small-128k-instruct`, etc. | | ✅︎ | ✅︎ |
| `PhiMoEForCausalLM` | Phi-3.5-MoE | `microsoft/Phi-3.5-MoE-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi4FlashForCausalLM` | Phi-4-mini-flash-reasoning | `microsoft/microsoft/Phi-4-mini-instruct`, etc. | | | |
| `PersimmonForCausalLM` | Persimmon | `adept/persimmon-8b-base`, `adept/persimmon-8b-chat`, etc. | | ✅︎ | ✅︎ |
| `Plamo2ForCausalLM` | PLaMo2 | `pfnet/plamo-2-1b`, `pfnet/plamo-2-8b`, etc. | | | |
| `QWenLMHeadModel` | Qwen | `Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen2ForCausalLM` | QwQ, Qwen2 | `Qwen/QwQ-32B-Preview`, `Qwen/Qwen2-7B-Instruct`, `Qwen/Qwen2-7B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen2MoeForCausalLM` | Qwen2MoE | `Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc. | | ✅︎ | ✅︎ |
| `Qwen2MoeForCausalLM` | Qwen2MoE | `Qwen/Qwen1.5-MoE-A2.7B`, `Qwen/Qwen1.5-MoE-A2.7B-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen3ForCausalLM` | Qwen3 | `Qwen/Qwen3-8B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen3MoeForCausalLM` | Qwen3MoE | `Qwen/Qwen3-30B-A3B`, etc. | | ✅︎ | ✅︎ |
| `Qwen3MoeForCausalLM` | Qwen3MoE | `Qwen/Qwen3-30B-A3B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `StableLmForCausalLM` | StableLM | `stabilityai/stablelm-3b-4e1t`, `stabilityai/stablelm-base-alpha-7b-v2`, etc. | | | ✅︎ |
| `Starcoder2ForCausalLM` | Starcoder2 | `bigcode/starcoder2-3b`, `bigcode/starcoder2-7b`, `bigcode/starcoder2-15b`, etc. | | ✅︎ | ✅︎ |
| `SolarForCausalLM` | Solar Pro | `upstage/solar-pro-preview-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
@ -573,14 +588,17 @@ Specified using `--task generate`.
| `FuyuForCausalLM` | Fuyu | T + I | `adept/fuyu-8b`, etc. | | ✅︎ | ✅︎ |
| `Gemma3ForConditionalGeneration` | Gemma 3 | T + I<sup>+</sup> | `google/gemma-3-4b-it`, `google/gemma-3-27b-it`, etc. | ✅︎ | ✅︎ | ⚠️ |
| `GLM4VForCausalLM`<sup>^</sup> | GLM-4V | T + I | `THUDM/glm-4v-9b`, `THUDM/cogagent-9b-20241220`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4vForConditionalGeneration` | GLM-4.1V-Thinking | T + I<sup>E+</sup> + V<sup>E+</sup> | `THUDM/GLM-4.1V-9B-Thinkg`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4vForConditionalGeneration` | GLM-4.1V-Thinking | T + I<sup>E+</sup> + V<sup>E+</sup> | `THUDM/GLM-4.1V-9B-Thinking`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Glm4MoeForCausalLM` | GLM-4.5 | T + I<sup>E+</sup> + V<sup>E+</sup> | `THUDM/GLM-4.5`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `GraniteSpeechForConditionalGeneration` | Granite Speech | T + A | `ibm-granite/granite-speech-3.3-8b` | ✅︎ | ✅︎ | ✅︎ |
| `H2OVLChatModel` | H2OVL | T + I<sup>E+</sup> | `h2oai/h2ovl-mississippi-800m`, `h2oai/h2ovl-mississippi-2b`, etc. | | ✅︎ | ✅︎ |
| `Idefics3ForConditionalGeneration` | Idefics3 | T + I | `HuggingFaceM4/Idefics3-8B-Llama3`, etc. | ✅︎ | | ✅︎ |
| `InternS1ForConditionalGeneration` | Intern-S1 | T + I<sup>E+</sup> + V<sup>E+</sup> | `internlm/Intern-S1`, etc. | | ✅︎ | ✅︎ |
| `InternVLChatModel` | InternVL 3.0, InternVideo 2.5, InternVL 2.5, Mono-InternVL, InternVL 2.0 | T + I<sup>E+</sup> + (V<sup>E+</sup>) | `OpenGVLab/InternVL3-9B`, `OpenGVLab/InternVideo2_5_Chat_8B`, `OpenGVLab/InternVL2_5-4B`, `OpenGVLab/Mono-InternVL-2B`, `OpenGVLab/InternVL2-4B`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `KeyeForConditionalGeneration` | Keye-VL-8B-Preview | T + I<sup>E+</sup> + V<sup>E+</sup> | `Kwai-Keye/Keye-VL-8B-Preview` | | | ✅︎ |
| `KimiVLForConditionalGeneration` | Kimi-VL-A3B-Instruct, Kimi-VL-A3B-Thinking | T + I<sup>+</sup> | `moonshotai/Kimi-VL-A3B-Instruct`, `moonshotai/Kimi-VL-A3B-Thinking` | | | ✅︎ |
| `Llama4ForConditionalGeneration` | Llama 4 | T + I<sup>+</sup> | `meta-llama/Llama-4-Scout-17B-16E-Instruct`, `meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8`, `meta-llama/Llama-4-Maverick-17B-128E-Instruct`, etc. | | ✅︎ | ✅︎ |
| `Llama_Nemotron_Nano_VL` | Llama Nemotron Nano VL | T + I<sup>E+</sup> | `nvidia/Llama-3.1-Nemotron-Nano-VL-8B-V1` | ✅︎ | ✅︎ | ✅︎ |
| `LlavaForConditionalGeneration` | LLaVA-1.5, Pixtral (HF Transformers) | T + I<sup>E+</sup> | `llava-hf/llava-1.5-7b-hf`, `TIGER-Lab/Mantis-8B-siglip-llama3` (see note), `mistral-community/pixtral-12b`, etc. | | ✅︎ | ✅︎ |
| `LlavaNextForConditionalGeneration` | LLaVA-NeXT | T + I<sup>E+</sup> | `llava-hf/llava-v1.6-mistral-7b-hf`, `llava-hf/llava-v1.6-vicuna-7b-hf`, etc. | | ✅︎ | ✅︎ |
| `LlavaNextVideoForConditionalGeneration` | LLaVA-NeXT-Video | T + V | `llava-hf/LLaVA-NeXT-Video-7B-hf`, etc. | | ✅︎ | ✅︎ |
@ -596,6 +614,7 @@ Specified using `--task generate`.
| `PaliGemmaForConditionalGeneration` | PaliGemma, PaliGemma 2 | T + I<sup>E</sup> | `google/paligemma-3b-pt-224`, `google/paligemma-3b-mix-224`, `google/paligemma2-3b-ft-docci-448`, etc. | | ✅︎ | ⚠️ |
| `Phi3VForCausalLM` | Phi-3-Vision, Phi-3.5-Vision | T + I<sup>E+</sup> | `microsoft/Phi-3-vision-128k-instruct`, `microsoft/Phi-3.5-vision-instruct`, etc. | | ✅︎ | ✅︎ |
| `Phi4MMForCausalLM` | Phi-4-multimodal | T + I<sup>+</sup> / T + A<sup>+</sup> / I<sup>+</sup> + A<sup>+</sup> | `microsoft/Phi-4-multimodal-instruct`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Phi4MultimodalForCausalLM` | Phi-4-multimodal (HF Transformers) | T + I<sup>+</sup> / T + A<sup>+</sup> / I<sup>+</sup> + A<sup>+</sup> | `microsoft/Phi-4-multimodal-instruct` (with revision `refs/pr/70`), etc. | ✅︎ | ✅︎ | ✅︎ |
| `PixtralForConditionalGeneration` | Mistral 3 (Mistral format), Pixtral (Mistral format) | T + I<sup>+</sup> | `mistralai/Mistral-Small-3.1-24B-Instruct-2503`, `mistralai/Pixtral-12B-2409`, etc. | | ✅︎ | ✅︎ |
| `QwenVLForConditionalGeneration`<sup>^</sup> | Qwen-VL | T + I<sup>E+</sup> | `Qwen/Qwen-VL`, `Qwen/Qwen-VL-Chat`, etc. | ✅︎ | ✅︎ | ✅︎ |
| `Qwen2AudioForConditionalGeneration` | Qwen2-Audio | T + A<sup>+</sup> | `Qwen/Qwen2-Audio-7B-Instruct` | | ✅︎ | ✅︎ |
@ -607,6 +626,12 @@ Specified using `--task generate`.
| `TarsierForConditionalGeneration` | Tarsier | T + I<sup>E+</sup> | `omni-search/Tarsier-7b`, `omni-search/Tarsier-34b` | | ✅︎ | ✅︎ |
| `Tarsier2ForConditionalGeneration`<sup>^</sup> | Tarsier2 | T + I<sup>E+</sup> + V<sup>E+</sup> | `omni-research/Tarsier2-Recap-7b`, `omni-research/Tarsier2-7b-0115` | | ✅︎ | ✅︎ |
Some models are supported only via the [Transformers backend](#transformers). The purpose of the table below is to acknowledge models which we officially support in this way. The logs will say that the Transformers backend is being used, and you will see no warning that this is fallback behaviour. This means that, if you have issues with any of the models listed below, please [make an issue](https://github.com/vllm-project/vllm/issues/new/choose) and we'll do our best to fix it!
| Architecture | Models | Inputs | Example HF Models | [LoRA](../features/lora.md) | [PP](../serving/distributed_serving.md) | [V1](gh-issue:8779) |
|--------------|--------|--------|-------------------|-----------------------------|-----------------------------------------|---------------------|
| `Emu3ForConditionalGeneration` | Emu3 | T + I | `BAAI/Emu3-Chat-hf` | ✅︎ | ✅︎ | ✅︎ |
<sup>^</sup> You need to set the architecture name via `--hf-overrides` to match the one in vLLM.
&nbsp;&nbsp;&nbsp;&nbsp;• For example, to use DeepSeek-VL2 series models:
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;`--hf-overrides '{"architectures": ["DeepseekVLV2ForCausalLM"]}'`

View File

@ -1,31 +1,38 @@
# Distributed Inference and Serving
# Distributed inference and serving
## How to decide the distributed inference strategy?
## Distributed inference strategies for a single-model replica
Before going into the details of distributed inference and serving, let's first make it clear when to use distributed inference and what are the strategies available. The common practice is:
To choose a distributed inference strategy for a single-model replica, use the following guidelines:
- **Single GPU (no distributed inference)**: If your model fits in a single GPU, you probably don't need to use distributed inference. Just use the single GPU to run the inference.
- **Single-Node Multi-GPU (tensor parallel inference)**: If your model is too large to fit in a single GPU, but it can fit in a single node with multiple GPUs, you can use tensor parallelism. The tensor parallel size is the number of GPUs you want to use. For example, if you have 4 GPUs in a single node, you can set the tensor parallel size to 4.
- **Multi-Node Multi-GPU (tensor parallel plus pipeline parallel inference)**: If your model is too large to fit in a single node, you can use tensor parallel together with pipeline parallelism. The tensor parallel size is the number of GPUs you want to use in each node, and the pipeline parallel size is the number of nodes you want to use. For example, if you have 16 GPUs in 2 nodes (8 GPUs per node), you can set the tensor parallel size to 8 and the pipeline parallel size to 2.
- **Single GPU (no distributed inference):** if the model fits on a single GPU, distributed inference is probably unnecessary. Run inference on that GPU.
- **Single-node multi-GPU using tensor parallel inference:** if the model is too large for a single GPU but fits on a single node with multiple GPUs, use *tensor parallelism*. For example, set `tensor_parallel_size=4` when using a node with 4 GPUs.
- **Multi-node multi-GPU using tensor parallel and pipeline parallel inference:** if the model is too large for a single node, combine *tensor parallelism* with *pipeline parallelism*. Set `tensor_parallel_size` to the number of GPUs per node and `pipeline_parallel_size` to the number of nodes. For example, set `tensor_parallel_size=8` and `pipeline_parallel_size=2` when using 2 nodes with 8 GPUs per node.
In short, you should increase the number of GPUs and the number of nodes until you have enough GPU memory to hold the model. The tensor parallel size should be the number of GPUs in each node, and the pipeline parallel size should be the number of nodes.
Increase the number of GPUs and nodes until there is enough GPU memory for the model. Set `tensor_parallel_size` to the number of GPUs per node and `pipeline_parallel_size` to the number of nodes.
After adding enough GPUs and nodes to hold the model, you can run vLLM first, which will print some logs like `# GPU blocks: 790`. Multiply the number by `16` (the block size), and you can get roughly the maximum number of tokens that can be served on the current configuration. If this number is not satisfying, e.g. you want higher throughput, you can further increase the number of GPUs or nodes, until the number of blocks is enough.
After you provision sufficient resources to fit the model, run `vllm`. Look for log messages like:
!!! note
There is one edge case: if the model fits in a single node with multiple GPUs, but the number of GPUs cannot divide the model size evenly, you can use pipeline parallelism, which splits the model along layers and supports uneven splits. In this case, the tensor parallel size should be 1 and the pipeline parallel size should be the number of GPUs.
```text
INFO 07-23 13:56:04 [kv_cache_utils.py:775] GPU KV cache size: 643,232 tokens
INFO 07-23 13:56:04 [kv_cache_utils.py:779] Maximum concurrency for 40,960 tokens per request: 15.70x
```
### Distributed serving of MoE (Mixture of Experts) models
The `GPU KV cache size` line reports the total number of tokens that can be stored in the GPU KV cache at once. The `Maximum concurrency` line provides an estimate of how many requests can be served concurrently if each request requires the specified number of tokens (40,960 in the example above). The tokens-per-request number is taken from the model configuration's maximum sequence length, `ModelConfig.max_model_len`. If these numbers are lower than your throughput requirements, add more GPUs or nodes to your cluster.
It is often advantageous to exploit the inherent parallelism of experts by using a separate parallelism strategy for the expert layers. vLLM supports large-scale deployment combining Data Parallel attention with Expert or Tensor Parallel MoE layers. See the page on [Data Parallel Deployment](data_parallel_deployment.md) for more information.
!!! note "Edge case: uneven GPU splits"
If the model fits within a single node but the GPU count doesn't evenly divide the model size, enable pipeline parallelism, which splits the model along layers and supports uneven splits. In this scenario, set `tensor_parallel_size=1` and `pipeline_parallel_size` to the number of GPUs. Furthermore, if the GPUs on the node do not have NVLINK interconnect (e.g. L40S), leverage pipeline parallelism instead of tensor parallelism for higher throughput and lower communication overhead.
## Running vLLM on a single node
### Distributed serving of *Mixture of Experts* (*MoE*) models
vLLM supports distributed tensor-parallel and pipeline-parallel inference and serving. Currently, we support [Megatron-LM's tensor parallel algorithm](https://arxiv.org/pdf/1909.08053.pdf). We manage the distributed runtime with either [Ray](https://github.com/ray-project/ray) or python native multiprocessing. Multiprocessing can be used when deploying on a single node, multi-node inference currently requires Ray.
It's often advantageous to exploit the inherent parallelism of experts by using a separate parallelism strategy for the expert layers. vLLM supports large-scale deployment combining Data Parallel attention with Expert or Tensor Parallel MoE layers. For more information, see [Data Parallel Deployment](data_parallel_deployment.md).
Multiprocessing will be used by default when not running in a Ray placement group and if there are sufficient GPUs available on the same node for the configured `tensor_parallel_size`, otherwise Ray will be used. This default can be overridden via the `LLM` class `distributed_executor_backend` argument or `--distributed-executor-backend` API server argument. Set it to `mp` for multiprocessing or `ray` for Ray. It's not required for Ray to be installed for the multiprocessing case.
## Single-node deployment
To run multi-GPU inference with the `LLM` class, set the `tensor_parallel_size` argument to the number of GPUs you want to use. For example, to run inference on 4 GPUs:
vLLM supports distributed tensor-parallel and pipeline-parallel inference and serving. The implementation includes [Megatron-LM's tensor parallel algorithm](https://arxiv.org/pdf/1909.08053.pdf).
The default distributed runtimes are [Ray](https://github.com/ray-project/ray) for multi-node inference and native Python `multiprocessing` for single-node inference. You can override the defaults by setting `distributed_executor_backend` in the `LLM` class or `--distributed-executor-backend` in the API server. Use `mp` for `multiprocessing` or `ray` for Ray.
For multi-GPU inference, set `tensor_parallel_size` in the `LLM` class to the desired GPU count. For example, to run inference on 4 GPUs:
```python
from vllm import LLM
@ -33,84 +40,96 @@ llm = LLM("facebook/opt-13b", tensor_parallel_size=4)
output = llm.generate("San Francisco is a")
```
To run multi-GPU serving, pass in the `--tensor-parallel-size` argument when starting the server. For example, to run API server on 4 GPUs:
For multi-GPU serving, include `--tensor-parallel-size` when starting the server. For example, to run the API server on 4 GPUs:
```bash
vllm serve facebook/opt-13b \
--tensor-parallel-size 4
```
You can also additionally specify `--pipeline-parallel-size` to enable pipeline parallelism. For example, to run API server on 8 GPUs with pipeline parallelism and tensor parallelism:
To enable pipeline parallelism, add `--pipeline-parallel-size`. For example, to run the API server on 8 GPUs with pipeline parallelism and tensor parallelism:
```bash
# Eight GPUs total
vllm serve gpt2 \
--tensor-parallel-size 4 \
--pipeline-parallel-size 2
```
## Running vLLM on multiple nodes
## Multi-node deployment
If a single node does not have enough GPUs to hold the model, you can run the model using multiple nodes. It is important to make sure the execution environment is the same on all nodes, including the model path, the Python environment. The recommended way is to use docker images to ensure the same environment, and hide the heterogeneity of the host machines via mapping them into the same docker configuration.
If a single node lacks sufficient GPUs to hold the model, deploy vLLM across multiple nodes. Multi-node deployments require Ray as the runtime engine. Ensure that every node provides an identical execution environment, including the model path and Python packages. Using container images is recommended because they provide a convenient way to keep environments consistent and to hide host heterogeneity.
The first step, is to start containers and organize them into a cluster. We have provided the helper script <gh-file:examples/online_serving/run_cluster.sh> to start the cluster. Please note, this script launches docker without administrative privileges that would be required to access GPU performance counters when running profiling and tracing tools. For that purpose, the script can have `CAP_SYS_ADMIN` to the docker container by using the `--cap-add` option in the docker run command.
### Ray cluster setup with containers
Pick a node as the head node, and run the following command:
The helper script <gh-file:examples/online_serving/run_cluster.sh> starts containers across nodes and initializes Ray. By default, the script runs Docker without administrative privileges, which prevents access to the GPU performance counters when profiling or tracing. To enable admin privileges, add the `--cap-add=CAP_SYS_ADMIN` flag to the Docker command.
Choose one node as the head node and run:
```bash
bash run_cluster.sh \
vllm/vllm-openai \
ip_of_head_node \
<HEAD_NODE_IP> \
--head \
/path/to/the/huggingface/home/in/this/node \
-e VLLM_HOST_IP=ip_of_this_node
-e VLLM_HOST_IP=<HEAD_NODE_IP>
```
On the rest of the worker nodes, run the following command:
On each worker node, run:
```bash
bash run_cluster.sh \
vllm/vllm-openai \
ip_of_head_node \
<HEAD_NODE_IP> \
--worker \
/path/to/the/huggingface/home/in/this/node \
-e VLLM_HOST_IP=ip_of_this_node
-e VLLM_HOST_IP=<WORKER_NODE_IP>
```
Then you get a ray cluster of **containers**. Note that you need to keep the shells running these commands alive to hold the cluster. Any shell disconnect will terminate the cluster. In addition, please note that the argument `ip_of_head_node` should be the IP address of the head node, which is accessible by all the worker nodes. The IP addresses of each worker node should be specified in the `VLLM_HOST_IP` environment variable, and should be different for each worker node. Please check the network configuration of your cluster to make sure the nodes can communicate with each other through the specified IP addresses.
Note that `VLLM_HOST_IP` is unique for each worker. Keep the shells running these commands open; closing any shell terminates the cluster. Ensure that all nodes can communicate with each other through their IP addresses.
!!! warning
It is considered best practice to set `VLLM_HOST_IP` to an address on a private network segment for the vLLM cluster. The traffic sent here is not encrypted. The endpoints are also exchanging data in a format that could be exploited to execute arbitrary code should a malicious party gain access to the network. Please ensure that this network is not reachable by any untrusted parties.
!!! warning "Network security"
For security, set `VLLM_HOST_IP` to an address on a private network segment. Traffic sent over this network is unencrypted, and the endpoints exchange data in a format that can be exploited to execute arbitrary code if an adversary gains network access. Ensure that untrusted parties cannot reach the network.
!!! warning
Since this is a ray cluster of **containers**, all the following commands should be executed in the **containers**, otherwise you are executing the commands on the host machine, which is not connected to the ray cluster. To enter the container, you can use `docker exec -it node /bin/bash`.
From any node, enter a container and run `ray status` and `ray list nodes` to verify that Ray finds the expected number of nodes and GPUs.
Then, on any node, use `docker exec -it node /bin/bash` to enter the container, execute `ray status` and `ray list nodes` to check the status of the Ray cluster. You should see the right number of nodes and GPUs.
!!! tip
Alternatively, set up the Ray cluster using KubeRay. For more information, see [KubeRay vLLM documentation](https://docs.ray.io/en/latest/cluster/kubernetes/examples/vllm-rayservice.html).
After that, on any node, use `docker exec -it node /bin/bash` to enter the container again. **In the container**, you can use vLLM as usual, just as you have all the GPUs on one node: vLLM will be able to leverage GPU resources of all nodes in the Ray cluster, and therefore, only run the `vllm` command on this node but not other nodes. The common practice is to set the tensor parallel size to the number of GPUs in each node, and the pipeline parallel size to the number of nodes. For example, if you have 16 GPUs in 2 nodes (8 GPUs per node), you can set the tensor parallel size to 8 and the pipeline parallel size to 2:
### Running vLLM on a Ray cluster
!!! tip
If Ray is running inside containers, run the commands in the remainder of this guide _inside the containers_, not on the host. To open a shell inside a container, connect to a node and use `docker exec -it <container_name> /bin/bash`.
Once a Ray cluster is running, use vLLM as you would in a single-node setting. All resources across the Ray cluster are visible to vLLM, so a single `vllm` command on a single node is sufficient.
The common practice is to set the tensor parallel size to the number of GPUs in each node, and the pipeline parallel size to the number of nodes. For example, if you have 16 GPUs across 2 nodes (8 GPUs per node), set the tensor parallel size to 8 and the pipeline parallel size to 2:
```bash
vllm serve /path/to/the/model/in/the/container \
--tensor-parallel-size 8 \
--pipeline-parallel-size 2
vllm serve /path/to/the/model/in/the/container \
--tensor-parallel-size 8 \
--pipeline-parallel-size 2
```
You can also use tensor parallel without pipeline parallel, just set the tensor parallel size to the number of GPUs in the cluster. For example, if you have 16 GPUs in 2 nodes (8 GPUs per node), you can set the tensor parallel size to 16:
Alternatively, you can set `tensor_parallel_size` to the total number of GPUs in the cluster:
```bash
vllm serve /path/to/the/model/in/the/container \
--tensor-parallel-size 16
```
To make tensor parallel performant, you should make sure the communication between nodes is efficient, e.g. using high-speed network cards like InfiniBand. To correctly set up the cluster to use InfiniBand, append additional arguments like `--privileged -e NCCL_IB_HCA=mlx5` to the `run_cluster.sh` script. Please contact your system administrator for more information on how to set up the flags. One way to confirm if the InfiniBand is working is to run vLLM with `NCCL_DEBUG=TRACE` environment variable set, e.g. `NCCL_DEBUG=TRACE vllm serve ...` and check the logs for the NCCL version and the network used. If you find `[send] via NET/Socket` in the logs, it means NCCL uses raw TCP Socket, which is not efficient for cross-node tensor parallel. If you find `[send] via NET/IB/GDRDMA` in the logs, it means NCCL uses InfiniBand with GPUDirect RDMA, which is efficient.
## Troubleshooting distributed deployments
### GPUDirect RDMA
To make tensor parallelism performant, ensure that communication between nodes is efficient, for example, by using high-speed network cards such as InfiniBand. To set up the cluster to use InfiniBand, append additional arguments like `--privileged -e NCCL_IB_HCA=mlx5` to the `run_cluster.sh` script. Contact your system administrator for more information about the required flags. One way to confirm if InfiniBand is working is to run `vllm` with the `NCCL_DEBUG=TRACE` environment variable set, for example `NCCL_DEBUG=TRACE vllm serve ...`, and check the logs for the NCCL version and the network used. If you find `[send] via NET/Socket` in the logs, NCCL uses a raw TCP socket, which is not efficient for cross-node tensor parallelism. If you find `[send] via NET/IB/GDRDMA` in the logs, NCCL uses InfiniBand with GPUDirect RDMA, which is efficient.
To enable GPUDirect RDMA with vLLM, specific configuration tweaks are needed. This setup ensures:
## Enabling GPUDirect RDMA
- `IPC_LOCK` Security Context: Add the `IPC_LOCK` capability to the containers security context to lock memory pages and prevent swapping to disk.
- Shared Memory with `/dev/shm`: Mount `/dev/shm` in the pod spec to provide shared memory for IPC.
To enable GPUDirect RDMA with vLLM, configure the following settings:
When using Docker, you can set up the container as follows:
- `IPC_LOCK` security context: add the `IPC_LOCK` capability to the container's security context to lock memory pages and prevent swapping to disk.
- Shared memory with `/dev/shm`: mount `/dev/shm` in the pod spec to provide shared memory for interprocess communication (IPC).
If you use Docker, set up the container as follows:
```bash
docker run --gpus all \
@ -120,7 +139,7 @@ docker run --gpus all \
vllm/vllm-openai
```
When using Kubernetes, you can set up the pod spec as follows:
If you use Kubernetes, set up the pod spec as follows:
```yaml
...
@ -146,13 +165,21 @@ spec:
...
```
!!! warning
After you start the Ray cluster, you'd better also check the GPU-GPU communication between nodes. It can be non-trivial to set up. Please refer to the [sanity check script][troubleshooting-incorrect-hardware-driver] for more information. If you need to set some environment variables for the communication configuration, you can append them to the `run_cluster.sh` script, e.g. `-e NCCL_SOCKET_IFNAME=eth0`. Note that setting environment variables in the shell (e.g. `NCCL_SOCKET_IFNAME=eth0 vllm serve ...`) only works for the processes in the same node, not for the processes in the other nodes. Setting environment variables when you create the cluster is the recommended way. See <gh-issue:6803> for more information.
Efficient tensor parallelism requires fast inter-node communication, preferably through high-speed network adapters such as InfiniBand. To enable InfiniBand, append flags such as `--privileged -e NCCL_IB_HCA=mlx5` to `run_cluster.sh`. For cluster-specific settings, consult your system administrator.
!!! warning
Please make sure you downloaded the model to all the nodes (with the same path), or the model is downloaded to some distributed file system that is accessible by all nodes.
To confirm InfiniBand operation, enable detailed NCCL logs:
When you use huggingface repo id to refer to the model, you should append your huggingface token to the `run_cluster.sh` script, e.g. `-e HF_TOKEN=`. The recommended way is to download the model first, and then use the path to refer to the model.
```bash
NCCL_DEBUG=TRACE vllm serve ...
```
!!! warning
If you keep receiving the error message `Error: No available node types can fulfill resource request` but you have enough GPUs in the cluster, chances are your nodes have multiple IP addresses and vLLM cannot find the right one, especially when you are using multi-node inference. Please make sure vLLM and ray use the same IP address. You can set the `VLLM_HOST_IP` environment variable to the right IP address in the `run_cluster.sh` script (different for each node!), and check `ray status` and `ray list nodes` to see the IP address used by Ray. See <gh-issue:7815> for more information.
Search the logs for the transport method. Entries containing `[send] via NET/Socket` indicate raw TCP sockets, which perform poorly for cross-node tensor parallelism. Entries containing `[send] via NET/IB/GDRDMA` indicate InfiniBand with GPUDirect RDMA, which provides high performance.
!!! tip "Verify inter-node GPU communication"
After you start the Ray cluster, verify GPU-to-GPU communication across nodes. Proper configuration can be non-trivial. For more information, see [troubleshooting script][troubleshooting-incorrect-hardware-driver]. If you need additional environment variables for communication configuration, append them to `run_cluster.sh`, for example `-e NCCL_SOCKET_IFNAME=eth0`. Setting environment variables during cluster creation is recommended because the variables propagate to all nodes. In contrast, setting environment variables in the shell affects only the local node. For more information, see <gh-issue:6803>.
!!! tip "Pre-download Hugging Face models"
If you use Hugging Face models, downloading the model before starting vLLM is recommended. Download the model on every node to the same path, or store the model on a distributed file system accessible by all nodes. Then pass the path to the model in place of the repository ID. Otherwise, supply a Hugging Face token by appending `-e HF_TOKEN=<TOKEN>` to `run_cluster.sh`.
!!! tip
The error message `Error: No available node types can fulfill resource request` can appear even when the cluster has enough GPUs. The issue often occurs when nodes have multiple IP addresses and vLLM can't select the correct one. Ensure that vLLM and Ray use the same IP address by setting `VLLM_HOST_IP` in `run_cluster.sh` (with a different value on each node). Use `ray status` and `ray list nodes` to verify the chosen IP address. For more information, see <gh-issue:7815>.

View File

@ -0,0 +1,244 @@
# Expert Parallel Deployment
vLLM supports Expert Parallelism (EP), which allows experts in Mixture-of-Experts (MoE) models to be deployed on separate GPUs, increasing locality, efficiency, and throughput overall.
EP is typically coupled with Data Parallelism (DP). While DP can be used independently of EP, EP is more efficient when used in conjunction with DP. You can read more about data parallelism [here](data_parallel_deployment.md).
## Prerequisites
Before using EP, you need to install the necessary dependencies. We are actively working on making this easier in the future:
1. **Install DeepEP and pplx-kernels**: Set up host environment following vLLM's guide for EP kernels [here](gh-file:tools/ep_kernels).
2. **Install DeepGEMM library**: Follow the [official instructions](https://github.com/deepseek-ai/DeepGEMM#installation).
3. **For disaggregated serving**: Install UCX and NIXL following the [script](gh-file:tools/install_nixl.sh).
### Backend Selection Guide
vLLM provides three communication backends for EP:
| Backend | Use Case | Features | Best For |
|---------|----------|----------|----------|
| `pplx` | Single node | Chunked prefill support | Development, best for intra-node deployments |
| `deepep_high_throughput` | Multi-node prefill | Grouped GEMM with continuous layout | High-throughput scenarios, prefill-dominated workloads |
| `deepep_low_latency` | Multi-node decode | CUDA graph support, masked layout | Low-latency scenarios, decode-dominated workloads |
## Single Node Deployment
!!! warning
EP is an experimental feature. Argument names and default values may change in the future.
### Configuration
Enable EP by setting the `--enable-expert-parallel` flag. The EP size is automatically calculated as:
```
EP_SIZE = TP_SIZE × DP_SIZE
```
Where:
- `TP_SIZE`: Tensor parallel size (always 1 for now)
- `DP_SIZE`: Data parallel size
- `EP_SIZE`: Expert parallel size (computed automatically)
### Example Command
The following command serves a `DeepSeek-V3-0324` model with 1-way tensor parallel, 8-way (attention) data parallel, and 8-way expert parallel. The attention weights are replicated across all GPUs, while the expert weights are split across GPUs. It will work on a H200 (or H20) node with 8 GPUs. For H100, you can try to serve a smaller model or refer to the multi-node deployment section.
```bash
# Single node EP deployment with pplx backend
VLLM_ALL2ALL_BACKEND=pplx VLLM_USE_DEEP_GEMM=1 \
vllm serve deepseek-ai/DeepSeek-V3-0324 \
--tensor-parallel-size 1 \ # Tensor parallelism across 1 GPU
--data-parallel-size 8 \ # Data parallelism across 8 processes
--enable-expert-parallel # Enable expert parallelism
```
## Multi-Node Deployment
For multi-node deployment, use the DeepEP communication kernel with one of two modes (see [Backend Selection Guide](#backend-selection-guide) above).
### Deployment Steps
1. **Run one command per node** - Each node requires its own launch command
2. **Configure networking** - Ensure proper IP addresses and port configurations
3. **Set node roles** - First node handles requests, additional nodes run in headless mode
### Example: 2-Node Deployment
The following example deploys `DeepSeek-V3-0324` across 2 nodes using `deepep_low_latency` mode:
```bash
# Node 1 (Primary - handles incoming requests)
VLLM_ALL2ALL_BACKEND=deepep_low_latency VLLM_USE_DEEP_GEMM=1 \
vllm serve deepseek-ai/DeepSeek-V3-0324 \
--tensor-parallel-size 1 \ # TP size per node
--enable-expert-parallel \ # Enable EP
--data-parallel-size 16 \ # Total DP size across all nodes
--data-parallel-size-local 8 \ # Local DP size on this node (8 GPUs per node)
--data-parallel-address 192.168.1.100 \ # Replace with actual IP of Node 1
--data-parallel-rpc-port 13345 \ # RPC communication port, can be any port as long as reachable by all nodes
--api-server-count=8 # Number of API servers for load handling (scaling this out to total ranks are recommended)
# Node 2 (Secondary - headless mode, no API server)
VLLM_ALL2ALL_BACKEND=deepep_low_latency VLLM_USE_DEEP_GEMM=1 \
vllm serve deepseek-ai/DeepSeek-V3-0324 \
--tensor-parallel-size 1 \ # TP size per node
--enable-expert-parallel \ # Enable EP
--data-parallel-size 16 \ # Total DP size across all nodes
--data-parallel-size-local 8 \ # Local DP size on this node
--data-parallel-start-rank 8 \ # Starting rank offset for this node
--data-parallel-address 192.168.1.100 \ # IP of primary node (Node 1)
--data-parallel-rpc-port 13345 \ # Same RPC port as primary
--headless # No API server, worker only
```
### Key Configuration Notes
- **Headless mode**: Secondary nodes run with `--headless` flag, meaning all client requests are handled by the primary node
- **Rank calculation**: `--data-parallel-start-rank` should equal the cumulative local DP size of previous nodes
- **Load scaling**: Adjust `--api-server-count` on the primary node to handle higher request loads
### Network Configuration
!!! important "InfiniBand Clusters"
On InfiniBand networked clusters, set this environment variable to prevent initialization hangs:
```bash
export GLOO_SOCKET_IFNAME=eth0
```
This ensures torch distributed group discovery uses Ethernet instead of InfiniBand for initial setup.
## Expert Parallel Load Balancer (EPLB)
While MoE models are typically trained so that each expert receives a similar number of tokens, in practice the distribution of tokens across experts can be highly skewed. vLLM provides an Expert Parallel Load Balancer (EPLB) to redistribute expert mappings across EP ranks, evening the load across experts.
### Configuration
Enable EPLB with the `--enable-eplb` flag.
!!! note "Model Support"
Currently only DeepSeek V3 architecture is supported.
When enabled, vLLM collects load statistics with every forward pass and periodically rebalances expert distribution.
### EPLB Parameters
| Parameter | Description | Default |
|-----------|-------------|---------|
| `--eplb-window-size` | Number of engine steps to track for rebalancing decisions | - |
| `--eplb-step-interval` | Frequency of rebalancing (every N engine steps) | - |
| `--eplb-log-balancedness` | Log balancedness metrics (avg tokens per expert ÷ max tokens per expert) | `false` |
| `--num-redundant-experts` | Additional global experts per EP rank beyond equal distribution | `0` |
### Expert Distribution Formula
- **Default**: Each EP rank has `NUM_TOTAL_EXPERTS ÷ NUM_EP_RANKS` experts
- **With redundancy**: Each EP rank has `(NUM_TOTAL_EXPERTS + NUM_REDUNDANT_EXPERTS) ÷ NUM_EP_RANKS` experts
### Example Command
Single node deployment with EPLB enabled:
```bash
# Single node with EPLB load balancing
VLLM_ALL2ALL_BACKEND=pplx VLLM_USE_DEEP_GEMM=1 vllm serve deepseek-ai/DeepSeek-V3-0324 \
--tensor-parallel-size 1 \ # Tensor parallelism
--data-parallel-size 8 \ # Data parallelism
--enable-expert-parallel \ # Enable EP
--enable-eplb \ # Enable load balancer
--eplb-log-balancedness \ # Log balancing metrics
--eplb-window-size 1000 \ # Track last 1000 engine steps
--eplb-step-interval 3000 # Rebalance every 3000 steps
```
For multi-node deployment, add these EPLB flags to each node's command. We recommend setting `--num-redundant-experts` to 32 in large scale use cases so the most popular experts are always available.
## Disaggregated Serving (Prefill/Decode Split)
For production deployments requiring strict SLA guarantees for time-to-first-token and inter-token latency, disaggregated serving allows independent scaling of prefill and decode operations.
### Architecture Overview
- **Prefill Instance**: Uses `deepep_high_throughput` backend for optimal prefill performance
- **Decode Instance**: Uses `deepep_low_latency` backend for minimal decode latency
- **KV Cache Transfer**: Connects instances via NIXL or other KV connectors
### Setup Steps
1. **Install KV Connector**: Install NIXL using the [installation script](gh-file:tools/install_nixl.sh)
2. **Configure Both Instances**: Add this flag to both prefill and decode instances `--kv-transfer-config '{"kv_connector":"NixlConnector","kv_role":"kv_both"}`
3. **Client Orchestration**: Use the client-side script below to coordinate prefill/decode operations. We are actively working on routing solutions.
### Client Orchestration Example
```python
from openai import OpenAI
import uuid
try:
# 1: Set up clients for prefill and decode instances
openai_api_key = "EMPTY" # vLLM doesn't require a real API key
# Replace these IP addresses with your actual instance addresses
prefill_client = OpenAI(
api_key=openai_api_key,
base_url="http://192.168.1.100:8000/v1", # Prefill instance URL
)
decode_client = OpenAI(
api_key=openai_api_key,
base_url="http://192.168.1.101:8001/v1", # Decode instance URL
)
# Get model name from prefill instance
models = prefill_client.models.list()
model = models.data[0].id
print(f"Using model: {model}")
# 2: Prefill Phase
# Generate unique request ID to link prefill and decode operations
request_id = str(uuid.uuid4())
print(f"Request ID: {request_id}")
prefill_response = prefill_client.completions.create(
model=model,
# Prompt must exceed vLLM's block size (16 tokens) for PD to work
prompt="Write a detailed explanation of Paged Attention for Transformers works including the management of KV cache for multi-turn conversations",
max_tokens=1, # Force prefill-only operation
extra_body={
"kv_transfer_params": {
"do_remote_decode": True, # Enable remote decode
"do_remote_prefill": False, # This is the prefill instance
"remote_engine_id": None, # Will be populated by vLLM
"remote_block_ids": None, # Will be populated by vLLM
"remote_host": None, # Will be populated by vLLM
"remote_port": None # Will be populated by vLLM
}
},
extra_headers={"X-Request-Id": request_id}
)
print("-" * 50)
print("✓ Prefill completed successfully")
print(f"Prefill response: {prefill_response.choices[0].text}")
# 3: Decode Phase
# Transfer KV cache parameters from prefill to decode instance
decode_response = decode_client.completions.create(
model=model,
prompt="This prompt is ignored during decode", # Original prompt not needed
max_tokens=150, # Generate up to 150 tokens
extra_body={
"kv_transfer_params": prefill_response.kv_transfer_params # Pass KV cache info
},
extra_headers={"X-Request-Id": request_id} # Same request ID
)
print("-" * 50)
print("✓ Decode completed successfully")
print(f"Final response: {decode_response.choices[0].text}")
except Exception as e:
print(f"❌ Error during disaggregated serving: {e}")
print("Check that both prefill and decode instances are running and accessible")
```

View File

@ -30,8 +30,31 @@ This API adds several batteries-included capabilities that simplify large-scale,
- Automatic sharding, load balancing, and autoscaling distribute work across a Ray cluster with built-in fault tolerance.
- Continuous batching keeps vLLM replicas saturated and maximizes GPU utilization.
- Transparent support for tensor and pipeline parallelism enables efficient multi-GPU inference.
- Reading and writing to most popular file formats and cloud object storage.
- Scaling up the workload without code changes.
The following example shows how to run batched inference with Ray Data and vLLM:
<gh-file:examples/offline_inference/batch_llm_inference.py>
??? code
```python
import ray # Requires ray>=2.44.1
from ray.data.llm import vLLMEngineProcessorConfig, build_llm_processor
config = vLLMEngineProcessorConfig(model_source="unsloth/Llama-3.2-1B-Instruct")
processor = build_llm_processor(
config,
preprocess=lambda row: {
"messages": [
{"role": "system", "content": "You are a bot that completes unfinished haikus."},
{"role": "user", "content": row["item"]},
],
"sampling_params": {"temperature": 0.3, "max_tokens": 250},
},
postprocess=lambda row: {"answer": row["generated_text"]},
)
ds = ray.data.from_items(["An old silent pond..."])
ds = processor(ds)
ds.write_parquet("local:///tmp/data/")
```
For more information about the Ray Data LLM API, see the [Ray Data LLM documentation](https://docs.ray.io/en/latest/data/working-with-llms.html).

View File

@ -351,6 +351,11 @@ you can use the [official OpenAI Python client](https://github.com/openai/openai
Code example: <gh-file:examples/online_serving/openai_transcription_client.py>
<!-- TODO: api enforced limits + uploading audios -->
#### API Enforced Limits
Set the maximum audio file size (in MB) that VLLM will accept, via the
`VLLM_MAX_AUDIO_CLIP_FILESIZE_MB` environment variable. Default is 25 MB.
#### Extra Parameters
The following [sampling parameters][sampling-params] are supported.

View File

@ -2,10 +2,14 @@
Reinforcement Learning from Human Feedback (RLHF) is a technique that fine-tunes language models using human-generated preference data to align model outputs with desired behaviors.
vLLM can be used to generate the completions for RLHF. The best way to do this is with libraries like [TRL](https://github.com/huggingface/trl), [OpenRLHF](https://github.com/OpenRLHF/OpenRLHF) and [verl](https://github.com/volcengine/verl).
vLLM can be used to generate the completions for RLHF. Some ways to do this include using libraries like [TRL](https://github.com/huggingface/trl), [OpenRLHF](https://github.com/OpenRLHF/OpenRLHF), [verl](https://github.com/volcengine/verl) and [unsloth](https://github.com/unslothai/unsloth).
See the following basic examples to get started if you don't want to use an existing library:
- [Training and inference processes are located on separate GPUs (inspired by OpenRLHF)](../examples/offline_inference/rlhf.md)
- [Training and inference processes are colocated on the same GPUs using Ray](../examples/offline_inference/rlhf_colocate.md)
- [Utilities for performing RLHF with vLLM](../examples/offline_inference/rlhf_utils.md)
See the following notebooks showing how to use vLLM for GRPO:
- [Qwen-3 4B GRPO using Unsloth + vLLM](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen3_(4B)-GRPO.ipynb)

View File

@ -107,12 +107,11 @@ to enable simultaneous generation and embedding using the same engine instance i
Models using selective state-space mechanisms instead of standard transformer attention are partially supported.
Models that use Mamba-2 layers (e.g., `Mamba2ForCausalLM`) are supported, but models that use older Mamba-1 layers
(e.g., `MambaForCausalLM`, `JambaForCausalLM`) are not yet supported. Please note that these models currently require
enforcing eager mode and disabling prefix caching in V1.
disabling prefix caching in V1.
Models that combine Mamba-2 layers with standard attention layers are also supported (e.g., `BambaForCausalLM`,
`Zamba2ForCausalLM`, `NemotronHForCausalLM`, `FalconH1ForCausalLM` and `GraniteMoeHybridForCausalLM`). Please note that
these models currently require enforcing eager mode, disabling prefix caching, and using the FlashInfer attention
backend in V1.
these models currently require disabling prefix caching and using the FlashInfer attention backend in V1.
#### Encoder-Decoder Models

View File

@ -190,6 +190,37 @@ def run_phi4mm(question: str, audio_count: int) -> ModelRequestData:
)
def run_phi4_multimodal(question: str, audio_count: int) -> ModelRequestData:
"""
Phi-4-multimodal-instruct supports both image and audio inputs. Here, we
show how to process audio inputs.
"""
model_path = snapshot_download(
"microsoft/Phi-4-multimodal-instruct", revision="refs/pr/70"
)
# Since the vision-lora and speech-lora co-exist with the base model,
# we have to manually specify the path of the lora weights.
speech_lora_path = os.path.join(model_path, "speech-lora")
placeholders = "<|audio|>" * audio_count
prompts = f"<|user|>{placeholders}{question}<|end|><|assistant|>"
engine_args = EngineArgs(
model=model_path,
max_model_len=12800,
max_num_seqs=2,
enable_lora=True,
max_lora_rank=320,
limit_mm_per_prompt={"audio": audio_count},
)
return ModelRequestData(
engine_args=engine_args,
prompt=prompts,
lora_requests=[LoRARequest("speech", 1, speech_lora_path)],
)
# Qwen2-Audio
def run_qwen2_audio(question: str, audio_count: int) -> ModelRequestData:
model_name = "Qwen/Qwen2-Audio-7B-Instruct"
@ -303,6 +334,7 @@ model_example_map = {
"granite_speech": run_granite_speech,
"minicpmo": run_minicpmo,
"phi4_mm": run_phi4mm,
"phi4_multimodal": run_phi4_multimodal,
"qwen2_audio": run_qwen2_audio,
"qwen2_5_omni": run_qwen2_5_omni,
"ultravox": run_ultravox,

View File

@ -28,10 +28,10 @@ def main(args: Namespace):
# Create an LLM.
# You should pass task="classify" for classification models
model = LLM(**vars(args))
llm = LLM(**vars(args))
# Generate logits. The output is a list of ClassificationRequestOutputs.
outputs = model.classify(prompts)
outputs = llm.classify(prompts)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)

Some files were not shown because too many files have changed in this diff Show More