Compare commits
424 Commits
gpu_ids2
...
wide_ep_wo
| Author | SHA1 | Date | |
|---|---|---|---|
| f1c9ef3afd | |||
| d80a82f961 | |||
| a9b2a1d704 | |||
| 57c22e57f9 | |||
| bda9d0535f | |||
| 3d847a3125 | |||
| 5f8c9a425e | |||
| 1cbf951ba2 | |||
| a8936e5193 | |||
| 01a395e9e7 | |||
| 971948b846 | |||
| eed2f463b2 | |||
| 20950b29fb | |||
| 3339cba3ff | |||
| 0b8caf9095 | |||
| ccf27cc4d4 | |||
| c657369841 | |||
| 6c66f28fa5 | |||
| de509ae8eb | |||
| e7c4f9ee86 | |||
| 9094d11c5d | |||
| 56e544f24b | |||
| 97d6c30cc9 | |||
| a40a8506df | |||
| c215f5c877 | |||
| 1cd6eaba54 | |||
| f27fdfc3ed | |||
| de10ff0b7c | |||
| 9d197280fa | |||
| e98def439c | |||
| 05c1126f29 | |||
| 875af38e01 | |||
| 7728dd77bb | |||
| 2f6e6b33fb | |||
| a55c95096b | |||
| 97349fe2bc | |||
| 62965de5fe | |||
| 7ae75fa6d0 | |||
| f1b286b2fb | |||
| c7742d6113 | |||
| cea96a0156 | |||
| 2eddd437ba | |||
| 75d29cf4e1 | |||
| 41d3082c41 | |||
| 7cfea0df39 | |||
| 5ac3168ee3 | |||
| ec1250421a | |||
| 8177e2f02f | |||
| 396ee94180 | |||
| e189b50f53 | |||
| 136d750f5f | |||
| b3caeb82e7 | |||
| eab2f3980c | |||
| 9fe98d4250 | |||
| 29c6fbe58c | |||
| c72f049cb4 | |||
| f3a683b7c9 | |||
| 46d81d6951 | |||
| 5c3f2628d5 | |||
| 7311f74468 | |||
| 8ed01e32f7 | |||
| e38e96a3c0 | |||
| 40d86ee412 | |||
| 85d051f026 | |||
| 5140f54b89 | |||
| 947edd099e | |||
| fde60ee775 | |||
| b38bc652ac | |||
| adaf2c6d4f | |||
| 42343f1f89 | |||
| 965bc71b04 | |||
| 807a328bb6 | |||
| e0be2c4d09 | |||
| 9c8b2c2a8a | |||
| 2212cd6cfb | |||
| ce3a9b1378 | |||
| 2ce90e5b01 | |||
| 633f6e804b | |||
| b57296bb9a | |||
| 34ddcf9ff4 | |||
| fe56180c7f | |||
| 07d80d7b0e | |||
| 2dd72d23d9 | |||
| a6c7fb8cff | |||
| a7272c23d0 | |||
| 6066284914 | |||
| 1e9ea8e69d | |||
| d9f9a3fd96 | |||
| 1b25f1fe75 | |||
| e8cb0d0495 | |||
| 684174115d | |||
| cdb79ee63d | |||
| 5a19a6c670 | |||
| 2ded067fd2 | |||
| 13abd0eaf9 | |||
| 61b8cea3b4 | |||
| 526078a96c | |||
| 6da0078523 | |||
| 73e3949d07 | |||
| 6eca337ce0 | |||
| 85bda9e7d0 | |||
| 610852a423 | |||
| f0f4de8f26 | |||
| fc5f756db4 | |||
| e74bfc70e4 | |||
| 90eeea8f85 | |||
| dde295a934 | |||
| 6d8d0a24c0 | |||
| 11ef7a611e | |||
| dc2f159f8a | |||
| d5b981f8b1 | |||
| eec6942014 | |||
| fd48d99ffd | |||
| f8c15c4efb | |||
| aa08a954f9 | |||
| 13e4ee1dc3 | |||
| 772ce5af97 | |||
| 63d92abb7c | |||
| 11599b0e1f | |||
| f3137cdd81 | |||
| 82ec66f514 | |||
| 78c13e30e1 | |||
| 5c9b807b34 | |||
| 14bf19e39f | |||
| 4ac7713e32 | |||
| 8560a5b258 | |||
| 316b1bf706 | |||
| 7c734ee09b | |||
| f59ec35b7f | |||
| 2671334d45 | |||
| 2cc5016a19 | |||
| 6929f8b437 | |||
| 32ec9e2f2a | |||
| accac82928 | |||
| 23637dcdef | |||
| 6364af92f8 | |||
| 7aaa2bd5a8 | |||
| 2f5c14de6a | |||
| f002e9a870 | |||
| a1f3610fc6 | |||
| 4ecedd1806 | |||
| 107111a859 | |||
| 2dec7c1a5d | |||
| 08d2bd78da | |||
| 4f76a05f4f | |||
| f154bb9ff0 | |||
| 3ec7170ff1 | |||
| c401c64b4c | |||
| b77c7d327f | |||
| 35bc8bd5fb | |||
| 4594fc3b28 | |||
| ae268b6326 | |||
| 35366ae57c | |||
| 2226d5bd85 | |||
| 44554a0068 | |||
| 226b452a20 | |||
| f38ee34a0a | |||
| b194557a6c | |||
| 774d0c014b | |||
| 2c8db17cfd | |||
| 4fb56914c5 | |||
| 0df4d9b06b | |||
| ed25054577 | |||
| 10904e6d75 | |||
| a32237665d | |||
| bc8a8ce5ec | |||
| 32142b3c62 | |||
| 82b8027be6 | |||
| 3779eb8c81 | |||
| 9e23ad9655 | |||
| e69a92a1ce | |||
| 8425f785ad | |||
| c17231e827 | |||
| 6e5b5ca580 | |||
| 488d8a986a | |||
| af376ca19d | |||
| e7b2042681 | |||
| 90f1e55421 | |||
| 5e70dcd6e6 | |||
| 25d585ab7b | |||
| 8d0a01a5f2 | |||
| 0ec82edda5 | |||
| 005ae9be6c | |||
| 29d1ffc5b4 | |||
| 304dce7ec0 | |||
| 6ece16c4fe | |||
| a0e827e07c | |||
| a15a50fc17 | |||
| 6dda13c86b | |||
| 6b46c4b653 | |||
| d97841078b | |||
| e6b90a2805 | |||
| be54a951a3 | |||
| 042af0c8d3 | |||
| 378d33c392 | |||
| 940af1f03a | |||
| 92615d7fe8 | |||
| 8188196a1c | |||
| 7ba34b1241 | |||
| 9499e26e2a | |||
| 51ba839555 | |||
| d1fb65bde3 | |||
| 3a1d8940ae | |||
| 2b504eb770 | |||
| 10eb24cc91 | |||
| 2e8cbb58f3 | |||
| 752c6ade2e | |||
| 881e3cbe3b | |||
| 9f414a12ad | |||
| 6a971ed692 | |||
| da6579bf41 | |||
| c81259d33a | |||
| e3a0e43d7f | |||
| b3d82108e7 | |||
| 6d0734c562 | |||
| 7d94577138 | |||
| 59f935300c | |||
| 18e519ec86 | |||
| 1eaff27815 | |||
| cf8cc32674 | |||
| 3a2cb2649d | |||
| 3e04107d97 | |||
| 37bd8d6e4c | |||
| 468e2400fe | |||
| dcc6cfb991 | |||
| dd572c0ab3 | |||
| 9ffe905a41 | |||
| 9a9fda1423 | |||
| 466e878f2a | |||
| 217937221b | |||
| 5782581acf | |||
| 0f199f197b | |||
| b2eb2b5ad7 | |||
| 21274ab476 | |||
| ed8cbfedf8 | |||
| 45badd05d0 | |||
| 4adc66f64d | |||
| 55ad648715 | |||
| 5895afd780 | |||
| ca4eb82bcb | |||
| ba2dfbb0c2 | |||
| 1bf65138f6 | |||
| 54cf1cae62 | |||
| 5780121c95 | |||
| c7d8724e78 | |||
| b38baabcf9 | |||
| 89cab4d01f | |||
| b9a21e9173 | |||
| c4e3b12524 | |||
| 8dfb45ca33 | |||
| 8a8fc94639 | |||
| 4de7146351 | |||
| ac9fb732a5 | |||
| a3a6c695f4 | |||
| 90bd2ab6e3 | |||
| 9fb2d22032 | |||
| 2d6a38209b | |||
| 89e3c4e9b4 | |||
| fe8a2c544a | |||
| 4ef00b5cac | |||
| 5a7fb3ab9e | |||
| 11dfdf21bf | |||
| fdc5b43d20 | |||
| c5b8b5953a | |||
| 4fcef49ec4 | |||
| 8a4e5c5f3c | |||
| 76b494444f | |||
| 28a6d5423d | |||
| 58760e12b1 | |||
| a50d918225 | |||
| c9ba8104ed | |||
| 4e7dfbe7b4 | |||
| 72ad273582 | |||
| 01513a334a | |||
| ac2bf41e53 | |||
| a931b4cdcf | |||
| a0f8a79646 | |||
| 18bdcf4113 | |||
| 1c3198b6c4 | |||
| 260127ea54 | |||
| d0dc4cfca4 | |||
| d31a647124 | |||
| 85431bd9ad | |||
| c11013db8b | |||
| 1eb2b9c102 | |||
| 6ebf313790 | |||
| cfbcb9ed87 | |||
| 76ddeff293 | |||
| f46098335b | |||
| e9534c7202 | |||
| 7976446015 | |||
| fcb9f879c1 | |||
| 3ed94f9d0a | |||
| fa839565f2 | |||
| 75a99b98bf | |||
| b5c3b68359 | |||
| 6cbc4d4bea | |||
| 153c6f1e61 | |||
| 34cda778a0 | |||
| 30800b01c2 | |||
| 10be209493 | |||
| 19c863068b | |||
| f29fd8a7f8 | |||
| ed10f3cea1 | |||
| b637e9dcb8 | |||
| 1e36c8687e | |||
| 5bac61362b | |||
| 313ae8c16a | |||
| c847e34b39 | |||
| e7e3e6d263 | |||
| 4ffd963fa0 | |||
| 56fe4bedd6 | |||
| d91278181d | |||
| 20149d84d9 | |||
| 3534c39a20 | |||
| c586b55667 | |||
| 33d560001e | |||
| f148c44c6a | |||
| 235bfd5dfe | |||
| 68d28e37b0 | |||
| 37a7d5d74a | |||
| d4d309409f | |||
| 85bd6599e4 | |||
| 91b3d190ae | |||
| fc017915f5 | |||
| 9ad0a4588b | |||
| 016b8d1b7f | |||
| 80305c1b24 | |||
| 37e2ecace2 | |||
| 054c8657e3 | |||
| d4170fad39 | |||
| 946aadb4a0 | |||
| bcdfb2a330 | |||
| ba8c300018 | |||
| 8cdc371217 | |||
| 61e20828da | |||
| 55e1c66da5 | |||
| 86f3ac21ce | |||
| 149f2435a5 | |||
| c0569dbc82 | |||
| 8bb43b9c9e | |||
| 559756214b | |||
| 6d0cf239c6 | |||
| 3fc964433a | |||
| 0caf61c08a | |||
| 667624659b | |||
| 38efa28278 | |||
| e8cc53af5e | |||
| a4851cfe68 | |||
| 9887e8ec50 | |||
| f326ab9c88 | |||
| dcf2a5e208 | |||
| 1e9438e0b0 | |||
| 697ef765ee | |||
| a99b9f7dee | |||
| c488b928a7 | |||
| 2c7fa47161 | |||
| 88fc8a97e3 | |||
| 66f6fbd393 | |||
| 8632e831ba | |||
| 4bbfc36b16 | |||
| 80d38b8ac8 | |||
| 211b6a6113 | |||
| 247102f07f | |||
| bd4c1e6fdb | |||
| 99b4f080d8 | |||
| 020f58abcd | |||
| c1acd6d7d4 | |||
| 3b3b778d4a | |||
| 42d440c22b | |||
| f45a332886 | |||
| 6e2c176e1f | |||
| a86754a12b | |||
| c2a2f19aba | |||
| 2c11a738b3 | |||
| b639327ad9 | |||
| 4afe687a82 | |||
| 5de8d9f111 | |||
| c1c8ca57ff | |||
| a3a5a47e48 | |||
| fb25e95688 | |||
| 0d4891cd03 | |||
| f56d2996ca | |||
| 147afb448b | |||
| 3c7d942da8 | |||
| 890323dc1b | |||
| 01cae37713 | |||
| 11c0198615 | |||
| b1235c3e10 | |||
| 44d02f54db | |||
| a8593237c0 | |||
| fc0f41d10a | |||
| 7b828e30d5 | |||
| 5f0af36af5 | |||
| 0d21b2664c | |||
| 9907fc4494 | |||
| d47661f0cd | |||
| 53fa457391 | |||
| 6fb162447b | |||
| 66177189c5 | |||
| b4f0b5f9aa | |||
| cbd14ed561 | |||
| 7bd4c37ae7 | |||
| 8020e98c9f | |||
| 762be26a8e | |||
| 6a9e6b2abf | |||
| 5d09152ff1 | |||
| 31d5c1797f | |||
| 35514b682a | |||
| e2de455c34 | |||
| 5b032352cc | |||
| 922f316441 | |||
| 5923ab9524 | |||
| 0cf893cae1 | |||
| cf75cd2098 | |||
| b854321ffe | |||
| 5b6fe23d05 | |||
| f0c98cae27 | |||
| 574ad60db9 | |||
| fdadb6f43a | |||
| 41060c6e08 | |||
| 3de2ed767f | |||
| 299252ea82 | |||
| d6902ce79f |
@ -74,7 +74,7 @@ Here is an example of one test inside `latency-tests.json`:
|
||||
In this example:
|
||||
|
||||
- The `test_name` attributes is a unique identifier for the test. In `latency-tests.json`, it must start with `latency_`.
|
||||
- The `parameters` attribute control the command line arguments to be used for `benchmark_latency.py`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `benchmark_latency.py`. For example, the corresponding command line arguments for `benchmark_latency.py` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
|
||||
- The `parameters` attribute control the command line arguments to be used for `vllm bench latency`. Note that please use underline `_` instead of the dash `-` when specifying the command line arguments, and `run-performance-benchmarks.sh` will convert the underline to dash when feeding the arguments to `vllm bench latency`. For example, the corresponding command line arguments for `vllm bench latency` will be `--model meta-llama/Meta-Llama-3-8B --tensor-parallel-size 1 --load-format dummy --num-iters-warmup 5 --num-iters 15`
|
||||
|
||||
Note that the performance numbers are highly sensitive to the value of the parameters. Please make sure the parameters are set correctly.
|
||||
|
||||
@ -82,13 +82,13 @@ WARNING: The benchmarking script will save json results by itself, so please do
|
||||
|
||||
### Throughput test
|
||||
|
||||
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `benchmark_throughput.py`.
|
||||
The tests are specified in `throughput-tests.json`. The syntax is similar to `latency-tests.json`, except for that the parameters will be fed forward to `vllm bench throughput`.
|
||||
|
||||
The number of this test is also stable -- a slight change on the value of this number might vary the performance numbers by a lot.
|
||||
|
||||
### Serving test
|
||||
|
||||
We test the throughput by using `benchmark_serving.py` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
|
||||
We test the throughput by using `vllm bench serve` with request rate = inf to cover the online serving overhead. The corresponding parameters are in `serving-tests.json`, and here is an example:
|
||||
|
||||
```json
|
||||
[
|
||||
@ -118,8 +118,8 @@ Inside this example:
|
||||
|
||||
- The `test_name` attribute is also a unique identifier for the test. It must start with `serving_`.
|
||||
- The `server-parameters` includes the command line arguments for vLLM server.
|
||||
- The `client-parameters` includes the command line arguments for `benchmark_serving.py`.
|
||||
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `benchmark_serving.py`
|
||||
- The `client-parameters` includes the command line arguments for `vllm bench serve`.
|
||||
- The `qps_list` controls the list of qps for test. It will be used to configure the `--request-rate` parameter in `vllm bench serve`
|
||||
|
||||
The number of this test is less stable compared to the delay and latency benchmarks (due to randomized sharegpt dataset sampling inside `benchmark_serving.py`), but a large change on this number (e.g. 5% change) still vary the output greatly.
|
||||
|
||||
|
||||
@ -100,7 +100,7 @@ if __name__ == "__main__":
|
||||
raw_result = json.loads(f.read())
|
||||
|
||||
if "serving" in str(test_file):
|
||||
# this result is generated via `benchmark_serving.py`
|
||||
# this result is generated via `vllm bench serve` command
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
try:
|
||||
@ -120,7 +120,7 @@ if __name__ == "__main__":
|
||||
continue
|
||||
|
||||
elif "latency" in f.name:
|
||||
# this result is generated via `benchmark_latency.py`
|
||||
# this result is generated via `vllm bench latency` command
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
try:
|
||||
@ -148,7 +148,7 @@ if __name__ == "__main__":
|
||||
continue
|
||||
|
||||
elif "throughput" in f.name:
|
||||
# this result is generated via `benchmark_throughput.py`
|
||||
# this result is generated via `vllm bench throughput` command
|
||||
|
||||
# attach the benchmarking command to raw_result
|
||||
try:
|
||||
|
||||
@ -73,7 +73,7 @@ get_current_llm_serving_engine() {
|
||||
echo "Container: vllm"
|
||||
# move to a completely irrelevant directory, to avoid import vllm from current folder
|
||||
export CURRENT_LLM_SERVING_ENGINE=vllm
|
||||
|
||||
|
||||
return
|
||||
fi
|
||||
}
|
||||
@ -95,12 +95,14 @@ json2args() {
|
||||
}
|
||||
|
||||
kill_gpu_processes() {
|
||||
pkill -f python
|
||||
pkill -f python3
|
||||
pkill -f tritonserver
|
||||
pkill -f pt_main_thread
|
||||
pkill -f text-generation
|
||||
pkill -f lmdeploy
|
||||
pkill -f '[p]ython'
|
||||
pkill -f '[p]ython3'
|
||||
pkill -f '[t]ritonserver'
|
||||
pkill -f '[p]t_main_thread'
|
||||
pkill -f '[t]ext-generation'
|
||||
pkill -f '[l]mdeploy'
|
||||
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
|
||||
pkill -f '[V]LLM'
|
||||
|
||||
while [ "$(nvidia-smi --query-gpu=memory.used --format=csv,noheader,nounits | head -n 1)" -ge 1000 ]; do
|
||||
sleep 1
|
||||
@ -125,7 +127,7 @@ ensure_installed() {
|
||||
}
|
||||
|
||||
run_serving_tests() {
|
||||
# run serving tests using `benchmark_serving.py`
|
||||
# run serving tests using `vllm bench serve` command
|
||||
# $1: a json file specifying serving test cases
|
||||
|
||||
local serving_test_file
|
||||
@ -225,7 +227,7 @@ run_serving_tests() {
|
||||
|
||||
if [[ "$dataset_name" = "sharegpt" ]]; then
|
||||
|
||||
client_command="python3 benchmark_serving.py \
|
||||
client_command="vllm bench serve \
|
||||
--backend $backend \
|
||||
--tokenizer /tokenizer_cache \
|
||||
--model $model \
|
||||
@ -246,7 +248,7 @@ run_serving_tests() {
|
||||
sonnet_output_len=$(echo "$common_params" | jq -r '.sonnet_output_len')
|
||||
sonnet_prefix_len=$(echo "$common_params" | jq -r '.sonnet_prefix_len')
|
||||
|
||||
client_command="python3 benchmark_serving.py \
|
||||
client_command="vllm bench serve \
|
||||
--backend $backend \
|
||||
--tokenizer /tokenizer_cache \
|
||||
--model $model \
|
||||
@ -265,13 +267,13 @@ run_serving_tests() {
|
||||
$client_args"
|
||||
|
||||
else
|
||||
|
||||
|
||||
echo "The dataset name must be either 'sharegpt' or 'sonnet'. Got $dataset_name."
|
||||
exit 1
|
||||
|
||||
fi
|
||||
|
||||
|
||||
|
||||
|
||||
echo "Running test case $test_name with qps $qps"
|
||||
echo "Client command: $client_command"
|
||||
@ -302,7 +304,7 @@ run_serving_tests() {
|
||||
}
|
||||
|
||||
run_genai_perf_tests() {
|
||||
# run genai-perf tests
|
||||
# run genai-perf tests
|
||||
|
||||
# $1: a json file specifying genai-perf test cases
|
||||
local genai_perf_test_file
|
||||
@ -311,14 +313,14 @@ run_genai_perf_tests() {
|
||||
# Iterate over genai-perf tests
|
||||
jq -c '.[]' "$genai_perf_test_file" | while read -r params; do
|
||||
# get the test name, and append the GPU type back to it.
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
test_name=$(echo "$params" | jq -r '.test_name')
|
||||
|
||||
# if TEST_SELECTOR is set, only run the test cases that match the selector
|
||||
if [[ -n "$TEST_SELECTOR" ]] && [[ ! "$test_name" =~ $TEST_SELECTOR ]]; then
|
||||
echo "Skip test case $test_name."
|
||||
continue
|
||||
fi
|
||||
|
||||
|
||||
# prepend the current serving engine to the test name
|
||||
test_name=${CURRENT_LLM_SERVING_ENGINE}_${test_name}
|
||||
|
||||
@ -369,10 +371,10 @@ run_genai_perf_tests() {
|
||||
qps=$num_prompts
|
||||
echo "now qps is $qps"
|
||||
fi
|
||||
|
||||
|
||||
new_test_name=$test_name"_qps_"$qps
|
||||
backend=$CURRENT_LLM_SERVING_ENGINE
|
||||
|
||||
|
||||
if [[ "$backend" == *"vllm"* ]]; then
|
||||
backend="vllm"
|
||||
fi
|
||||
@ -413,7 +415,7 @@ prepare_dataset() {
|
||||
do
|
||||
cat sonnet.txt >> sonnet_4x.txt
|
||||
done
|
||||
|
||||
|
||||
}
|
||||
|
||||
main() {
|
||||
|
||||
@ -126,7 +126,8 @@ kill_gpu_processes() {
|
||||
ps -aux
|
||||
lsof -t -i:8000 | xargs -r kill -9
|
||||
pgrep python3 | xargs -r kill -9
|
||||
|
||||
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
|
||||
pgrep VLLM | xargs -r kill -9
|
||||
|
||||
# wait until GPU memory usage smaller than 1GB
|
||||
if command -v nvidia-smi; then
|
||||
@ -164,7 +165,7 @@ upload_to_buildkite() {
|
||||
}
|
||||
|
||||
run_latency_tests() {
|
||||
# run latency tests using `benchmark_latency.py`
|
||||
# run latency tests using `vllm bench latency` command
|
||||
# $1: a json file specifying latency test cases
|
||||
|
||||
local latency_test_file
|
||||
@ -205,7 +206,7 @@ run_latency_tests() {
|
||||
fi
|
||||
fi
|
||||
|
||||
latency_command=" $latency_envs python3 benchmark_latency.py \
|
||||
latency_command=" $latency_envs vllm bench latency \
|
||||
--output-json $RESULTS_FOLDER/${test_name}.json \
|
||||
$latency_args"
|
||||
|
||||
@ -231,7 +232,7 @@ run_latency_tests() {
|
||||
}
|
||||
|
||||
run_throughput_tests() {
|
||||
# run throughput tests using `benchmark_throughput.py`
|
||||
# run throughput tests using `vllm bench throughput`
|
||||
# $1: a json file specifying throughput test cases
|
||||
|
||||
local throughput_test_file
|
||||
@ -272,7 +273,7 @@ run_throughput_tests() {
|
||||
fi
|
||||
fi
|
||||
|
||||
throughput_command=" $throughput_envs python3 benchmark_throughput.py \
|
||||
throughput_command=" $throughput_envs vllm bench throughput \
|
||||
--output-json $RESULTS_FOLDER/${test_name}.json \
|
||||
$throughput_args"
|
||||
|
||||
@ -297,7 +298,7 @@ run_throughput_tests() {
|
||||
}
|
||||
|
||||
run_serving_tests() {
|
||||
# run serving tests using `benchmark_serving.py`
|
||||
# run serving tests using `vllm bench serve` command
|
||||
# $1: a json file specifying serving test cases
|
||||
|
||||
local serving_test_file
|
||||
@ -393,7 +394,7 @@ run_serving_tests() {
|
||||
|
||||
# pass the tensor parallel size to the client so that it can be displayed
|
||||
# on the benchmark dashboard
|
||||
client_command="python3 benchmark_serving.py \
|
||||
client_command="vllm bench serve \
|
||||
--save-result \
|
||||
--result-dir $RESULTS_FOLDER \
|
||||
--result-filename ${new_test_name}.json \
|
||||
@ -447,7 +448,7 @@ main() {
|
||||
(which jq) || (apt-get update && apt-get -y install jq)
|
||||
(which lsof) || (apt-get update && apt-get install -y lsof)
|
||||
|
||||
# get the current IP address, required by benchmark_serving.py
|
||||
# get the current IP address, required by `vllm bench serve` command
|
||||
export VLLM_HOST_IP=$(hostname -I | awk '{print $1}')
|
||||
# turn of the reporting of the status of each request, to clean up the terminal output
|
||||
export VLLM_LOGGING_LEVEL="WARNING"
|
||||
|
||||
@ -108,7 +108,6 @@ fi
|
||||
if [[ $commands == *" kernels/attention"* ]]; then
|
||||
commands="${commands} \
|
||||
--ignore=kernels/attention/test_attention_selector.py \
|
||||
--ignore=kernels/attention/test_blocksparse_attention.py \
|
||||
--ignore=kernels/attention/test_encoder_decoder_attn.py \
|
||||
--ignore=kernels/attention/test_flash_attn.py \
|
||||
--ignore=kernels/attention/test_flashinfer.py \
|
||||
|
||||
@ -6,15 +6,16 @@ set -ex
|
||||
|
||||
# allow to bind to different cores
|
||||
CORE_RANGE=${CORE_RANGE:-48-95}
|
||||
# used for TP/PP E2E test
|
||||
OMP_CORE_RANGE=${OMP_CORE_RANGE:-48-95}
|
||||
NUMA_NODE=${NUMA_NODE:-1}
|
||||
|
||||
export CMAKE_BUILD_PARALLEL_LEVEL=32
|
||||
|
||||
# Setup cleanup
|
||||
remove_docker_container() {
|
||||
set -e;
|
||||
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
|
||||
remove_docker_container() {
|
||||
set -e;
|
||||
docker rm -f cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"-avx2 || true;
|
||||
}
|
||||
trap remove_docker_container EXIT
|
||||
remove_docker_container
|
||||
@ -24,8 +25,8 @@ numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --tag cpu-test-"$NUMA_NODE
|
||||
numactl -C "$CORE_RANGE" -N "$NUMA_NODE" docker build --build-arg VLLM_CPU_DISABLE_AVX512="true" --tag cpu-test-"$NUMA_NODE"-avx2 --target vllm-test -f docker/Dockerfile.cpu .
|
||||
|
||||
# Run the image, setting --shm-size=4g for tensor parallel.
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --env VLLM_CPU_CI_ENV=1 --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_OMP_THREADS_BIND="$OMP_CORE_RANGE" --env VLLM_CPU_CI_ENV=1 --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE" cpu-test-"$NUMA_NODE"
|
||||
docker run -itd --cpuset-cpus="$CORE_RANGE" --cpuset-mems="$NUMA_NODE" --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --env VLLM_CPU_CI_ENV=1 -e E2E_OMP_THREADS="$OMP_CORE_RANGE" --shm-size=4g --name cpu-test-"$NUMA_NODE"-avx2 cpu-test-"$NUMA_NODE"-avx2
|
||||
|
||||
function cpu_tests() {
|
||||
set -e
|
||||
@ -68,7 +69,7 @@ function cpu_tests() {
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
set -e
|
||||
pytest -s -v \
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
|
||||
tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_logprobs[False-10-32-neuralmagic/Llama-3.2-1B-quantized.w8a8]"
|
||||
|
||||
# Note: disable it until supports V1
|
||||
# Run AWQ test
|
||||
@ -78,17 +79,16 @@ function cpu_tests() {
|
||||
# tests/quantization/test_ipex_quant.py"
|
||||
|
||||
# online serving
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c '
|
||||
set -e
|
||||
python3 -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --dtype half &
|
||||
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
|
||||
VLLM_CPU_CI_ENV=0 python3 benchmarks/benchmark_serving.py \
|
||||
VLLM_CPU_OMP_THREADS_BIND=$E2E_OMP_THREADS VLLM_CPU_SGL_KERNEL=1 vllm serve meta-llama/Llama-3.2-3B-Instruct -tp=2 -pp=2 &
|
||||
timeout 600 bash -c "until curl localhost:8000/v1/models; do sleep 1; done" || exit 1
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--dataset-name random \
|
||||
--model facebook/opt-125m \
|
||||
--model meta-llama/Llama-3.2-3B-Instruct \
|
||||
--num-prompts 20 \
|
||||
--endpoint /v1/completions \
|
||||
--tokenizer facebook/opt-125m"
|
||||
--endpoint /v1/completions'
|
||||
|
||||
# Run multi-lora tests
|
||||
docker exec cpu-test-"$NUMA_NODE" bash -c "
|
||||
|
||||
@ -6,19 +6,17 @@ set -exuo pipefail
|
||||
|
||||
# Try building the docker image
|
||||
cat <<EOF | docker build -t hpu-plugin-v1-test-env -f - .
|
||||
FROM 1.22-413-pt2.7.1:latest
|
||||
FROM gaudi-base-image:latest
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN pip install -v -r requirements/hpu.txt
|
||||
RUN pip install git+https://github.com/vllm-project/vllm-gaudi.git
|
||||
|
||||
ENV no_proxy=localhost,127.0.0.1
|
||||
ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
|
||||
|
||||
RUN VLLM_TARGET_DEVICE=hpu python3 setup.py install
|
||||
RUN VLLM_TARGET_DEVICE=empty pip install .
|
||||
RUN pip install git+https://github.com/vllm-project/vllm-gaudi.git
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
166
.buildkite/scripts/hardware_ci/run-tpu-v1-test-part2.sh
Executable file
166
.buildkite/scripts/hardware_ci/run-tpu-v1-test-part2.sh
Executable file
@ -0,0 +1,166 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -xu
|
||||
|
||||
|
||||
remove_docker_container() {
|
||||
docker rm -f tpu-test || true;
|
||||
docker rm -f vllm-tpu || true;
|
||||
}
|
||||
|
||||
trap remove_docker_container EXIT
|
||||
|
||||
# Remove the container that might not be cleaned up in the previous run.
|
||||
remove_docker_container
|
||||
|
||||
# Build the docker image.
|
||||
docker build -f docker/Dockerfile.tpu -t vllm-tpu .
|
||||
|
||||
# Set up cleanup.
|
||||
cleanup_docker() {
|
||||
# Get Docker's root directory
|
||||
docker_root=$(docker info -f '{{.DockerRootDir}}')
|
||||
if [ -z "$docker_root" ]; then
|
||||
echo "Failed to determine Docker root directory."
|
||||
exit 1
|
||||
fi
|
||||
echo "Docker root directory: $docker_root"
|
||||
# Check disk usage of the filesystem where Docker's root directory is located
|
||||
disk_usage=$(df "$docker_root" | tail -1 | awk '{print $5}' | sed 's/%//')
|
||||
# Define the threshold
|
||||
threshold=70
|
||||
if [ "$disk_usage" -gt "$threshold" ]; then
|
||||
echo "Disk usage is above $threshold%. Cleaning up Docker images and volumes..."
|
||||
# Remove dangling images (those that are not tagged and not used by any container)
|
||||
docker image prune -f
|
||||
# Remove unused volumes / force the system prune for old images as well.
|
||||
docker volume prune -f && docker system prune --force --filter "until=72h" --all
|
||||
echo "Docker images and volumes cleanup completed."
|
||||
else
|
||||
echo "Disk usage is below $threshold%. No cleanup needed."
|
||||
fi
|
||||
}
|
||||
cleanup_docker
|
||||
|
||||
# For HF_TOKEN.
|
||||
source /etc/environment
|
||||
|
||||
docker run --privileged --net host --shm-size=16G -it \
|
||||
-e "HF_TOKEN=$HF_TOKEN" --name tpu-test \
|
||||
vllm-tpu /bin/bash -c '
|
||||
set -e # Exit immediately if a command exits with a non-zero status.
|
||||
set -u # Treat unset variables as an error.
|
||||
|
||||
echo "--- Starting script inside Docker container ---"
|
||||
|
||||
# Create results directory
|
||||
RESULTS_DIR=$(mktemp -d)
|
||||
# If mktemp fails, set -e will cause the script to exit.
|
||||
echo "Results will be stored in: $RESULTS_DIR"
|
||||
|
||||
# Install dependencies
|
||||
echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||
export VLLM_XLA_CACHE_PATH=
|
||||
echo "Using VLLM V1"
|
||||
|
||||
echo "--- Hardware Information ---"
|
||||
# tpu-info
|
||||
echo "--- Starting Tests ---"
|
||||
set +e
|
||||
overall_script_exit_code=0
|
||||
|
||||
# --- Test Definitions ---
|
||||
# If a test fails, this function will print logs and will not cause the main script to exit.
|
||||
run_test() {
|
||||
local test_num=$1
|
||||
local test_name=$2
|
||||
local test_command=$3
|
||||
local log_file="$RESULTS_DIR/test_${test_num}.log"
|
||||
local actual_exit_code
|
||||
|
||||
echo "--- TEST_$test_num: Running $test_name ---"
|
||||
|
||||
# Execute the test command.
|
||||
eval "$test_command" > >(tee -a "$log_file") 2> >(tee -a "$log_file" >&2)
|
||||
actual_exit_code=$?
|
||||
|
||||
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" # This goes to main log
|
||||
echo "TEST_${test_num}_COMMAND_EXIT_CODE: $actual_exit_code" >> "$log_file" # Also to per-test log
|
||||
|
||||
if [ "$actual_exit_code" -ne 0 ]; then
|
||||
echo "TEST_$test_num ($test_name) FAILED with exit code $actual_exit_code." >&2
|
||||
echo "--- Log for failed TEST_$test_num ($test_name) ---" >&2
|
||||
if [ -f "$log_file" ]; then
|
||||
cat "$log_file" >&2
|
||||
else
|
||||
echo "Log file $log_file not found for TEST_$test_num ($test_name)." >&2
|
||||
fi
|
||||
echo "--- End of log for TEST_$test_num ($test_name) ---" >&2
|
||||
return "$actual_exit_code" # Return the failure code
|
||||
else
|
||||
echo "TEST_$test_num ($test_name) PASSED."
|
||||
return 0 # Return success
|
||||
fi
|
||||
}
|
||||
|
||||
# Helper function to call run_test and update the overall script exit code
|
||||
run_and_track_test() {
|
||||
local test_num_arg="$1"
|
||||
local test_name_arg="$2"
|
||||
local test_command_arg="$3"
|
||||
|
||||
# Run the test
|
||||
run_test "$test_num_arg" "$test_name_arg" "$test_command_arg"
|
||||
local test_specific_exit_code=$?
|
||||
|
||||
# If the test failed, set the overall script exit code to 1
|
||||
if [ "$test_specific_exit_code" -ne 0 ]; then
|
||||
# No need for extra echo here, run_test already logged the failure.
|
||||
overall_script_exit_code=1
|
||||
fi
|
||||
}
|
||||
|
||||
# --- Actual Test Execution ---
|
||||
run_and_track_test 1 "test_struct_output_generate.py" \
|
||||
"HF_HUB_DISABLE_XET=1 python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
|
||||
run_and_track_test 2 "test_moe_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
|
||||
run_and_track_test 3 "test_lora.py" \
|
||||
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
|
||||
run_and_track_test 4 "test_tpu_qkv_linear.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
|
||||
run_and_track_test 5 "test_spmd_model_weight_loading.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
|
||||
run_and_track_test 6 "test_kv_cache_update_kernel.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_kv_cache_update_kernel.py"
|
||||
|
||||
# After all tests have been attempted, exit with the overall status.
|
||||
if [ "$overall_script_exit_code" -ne 0 ]; then
|
||||
echo "--- One or more tests FAILED. Overall script exiting with failure code 1. ---"
|
||||
else
|
||||
echo "--- All tests have completed and PASSED. Overall script exiting with success code 0. ---"
|
||||
fi
|
||||
exit "$overall_script_exit_code"
|
||||
' # IMPORTANT: This is the closing single quote for the bash -c "..." command. Ensure it is present and correct.
|
||||
|
||||
# Capture the exit code of the docker run command
|
||||
DOCKER_RUN_EXIT_CODE=$?
|
||||
|
||||
# The trap will run for cleanup.
|
||||
# Exit the main script with the Docker run command's exit code.
|
||||
if [ "$DOCKER_RUN_EXIT_CODE" -ne 0 ]; then
|
||||
echo "Docker run command failed with exit code $DOCKER_RUN_EXIT_CODE."
|
||||
exit "$DOCKER_RUN_EXIT_CODE"
|
||||
else
|
||||
echo "Docker run command completed successfully."
|
||||
exit 0
|
||||
fi
|
||||
# TODO: This test fails because it uses RANDOM_SEED sampling
|
||||
# pytest -v -s /workspace/vllm/tests/tpu/test_custom_dispatcher.py \
|
||||
@ -62,7 +62,8 @@ echo "Results will be stored in: $RESULTS_DIR"
|
||||
echo "--- Installing Python dependencies ---"
|
||||
python3 -m pip install --progress-bar off git+https://github.com/thuml/depyf.git \
|
||||
&& python3 -m pip install --progress-bar off pytest pytest-asyncio tpu-info \
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4
|
||||
&& python3 -m pip install --progress-bar off lm_eval[api]==0.4.4 \
|
||||
&& python3 -m pip install --progress-bar off hf-transfer
|
||||
echo "--- Python dependencies installed ---"
|
||||
export VLLM_USE_V1=1
|
||||
export VLLM_XLA_CHECK_RECOMPILATION=1
|
||||
@ -70,7 +71,7 @@ export VLLM_XLA_CACHE_PATH=
|
||||
echo "Using VLLM V1"
|
||||
|
||||
echo "--- Hardware Information ---"
|
||||
tpu-info
|
||||
# tpu-info
|
||||
echo "--- Starting Tests ---"
|
||||
set +e
|
||||
overall_script_exit_code=0
|
||||
@ -134,7 +135,7 @@ run_and_track_test 1 "test_compilation.py" \
|
||||
run_and_track_test 2 "test_basic.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_basic.py"
|
||||
run_and_track_test 3 "test_accuracy.py::test_lm_eval_accuracy_v1_engine" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine"
|
||||
"HF_HUB_DISABLE_XET=1 python3 -m pytest -s -v /workspace/vllm/tests/entrypoints/llm/test_accuracy.py::test_lm_eval_accuracy_v1_engine"
|
||||
run_and_track_test 4 "test_quantization_accuracy.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_quantization_accuracy.py"
|
||||
run_and_track_test 5 "examples/offline_inference/tpu.py" \
|
||||
@ -149,18 +150,6 @@ run_and_track_test 9 "test_multimodal.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_multimodal.py"
|
||||
run_and_track_test 10 "test_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_pallas.py"
|
||||
run_and_track_test 11 "test_struct_output_generate.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/entrypoints/llm/test_struct_output_generate.py -k \"not test_structured_output_with_reasoning_matrices\""
|
||||
run_and_track_test 12 "test_moe_pallas.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/tpu/test_moe_pallas.py"
|
||||
run_and_track_test 13 "test_lora.py" \
|
||||
"VLLM_XLA_CHECK_RECOMPILATION=0 python3 -m pytest -s -v /workspace/vllm/tests/tpu/lora/test_lora.py"
|
||||
run_and_track_test 14 "test_tpu_qkv_linear.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_tpu_qkv_linear.py"
|
||||
run_and_track_test 15 "test_spmd_model_weight_loading.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_spmd_model_weight_loading.py"
|
||||
run_and_track_test 16 "test_kv_cache_update_kernel.py" \
|
||||
"python3 -m pytest -s -v /workspace/vllm/tests/v1/tpu/test_kv_cache_update_kernel.py"
|
||||
|
||||
# After all tests have been attempted, exit with the overall status.
|
||||
if [ "$overall_script_exit_code" -ne 0 ]; then
|
||||
|
||||
@ -31,4 +31,13 @@ docker run \
|
||||
VLLM_USE_V1=1 python3 examples/offline_inference/basic/generate.py --model facebook/opt-125m --block-size 64 --enforce-eager -tp 2 --distributed-executor-backend mp
|
||||
cd tests
|
||||
pytest -v -s v1/core
|
||||
pytest -v -s v1/engine
|
||||
pytest -v -s v1/sample --ignore=v1/sample/test_logprobs.py --ignore=v1/sample/test_logprobs_e2e.py
|
||||
pytest -v -s v1/worker --ignore=v1/worker/test_gpu_model_runner.py
|
||||
pytest -v -s v1/structured_output
|
||||
pytest -v -s v1/spec_decode --ignore=v1/spec_decode/test_max_len.py --ignore=v1/spec_decode/test_eagle.py
|
||||
pytest -v -s v1/kv_connector/unit --ignore=v1/kv_connector/unit/test_multi_connector.py --ignore=v1/kv_connector/unit/test_nixl_connector.py
|
||||
pytest -v -s v1/test_serial_utils.py
|
||||
pytest -v -s v1/test_utils.py
|
||||
pytest -v -s v1/test_metrics_reader.py
|
||||
'
|
||||
|
||||
@ -11,10 +11,10 @@ cd "$(dirname "${BASH_SOURCE[0]}")/../.."
|
||||
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
|
||||
|
||||
# run python-based benchmarks and upload the result to buildkite
|
||||
python3 benchmarks/benchmark_latency.py --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
|
||||
vllm bench latency --output-json latency_results.json 2>&1 | tee benchmark_latency.txt
|
||||
bench_latency_exit_code=$?
|
||||
|
||||
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
|
||||
vllm bench throughput --input-len 256 --output-len 256 --output-json throughput_results.json 2>&1 | tee benchmark_throughput.txt
|
||||
bench_throughput_exit_code=$?
|
||||
|
||||
# run server-based benchmarks and upload the result to buildkite
|
||||
@ -24,7 +24,7 @@ wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/r
|
||||
|
||||
# wait for server to start, timeout after 600 seconds
|
||||
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--dataset-name sharegpt \
|
||||
--dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
|
||||
@ -77,7 +77,7 @@ done
|
||||
echo "run benchmark test..."
|
||||
echo "logging to $BM_LOG"
|
||||
echo
|
||||
python benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name sonnet \
|
||||
|
||||
@ -117,7 +117,7 @@ steps:
|
||||
commands:
|
||||
- pytest -v -s core
|
||||
|
||||
- label: Entrypoints Test # 40min
|
||||
- label: Entrypoints Test (LLM) # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
fast_check: true
|
||||
@ -125,8 +125,6 @@ steps:
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/entrypoints/llm
|
||||
- tests/entrypoints/openai
|
||||
- tests/entrypoints/test_chat_utils
|
||||
- tests/entrypoints/offline_mode
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
@ -135,9 +133,21 @@ steps:
|
||||
- pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process
|
||||
- pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
- label: Entrypoints Test (API Server) # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
working_dir: "/vllm-workspace/tests"
|
||||
fast_check: true
|
||||
torch_nightly: true
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/entrypoints/openai
|
||||
- tests/entrypoints/test_chat_utils
|
||||
commands:
|
||||
- export VLLM_WORKER_MULTIPROC_METHOD=spawn
|
||||
- pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_chat_with_tool_reasoning.py --ignore=entrypoints/openai/test_oot_registration.py --ignore=entrypoints/openai/test_tensorizer_entrypoint.py --ignore=entrypoints/openai/correctness/
|
||||
- pytest -v -s entrypoints/test_chat_utils.py
|
||||
- VLLM_USE_V1=0 pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests
|
||||
|
||||
- label: Distributed Tests (4 GPUs) # 10min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
@ -149,13 +159,14 @@ steps:
|
||||
- tests/distributed/test_utils
|
||||
- tests/distributed/test_pynccl
|
||||
- tests/distributed/test_events
|
||||
- tests/spec_decode/e2e/test_integration_dist_tp4
|
||||
- tests/compile/test_basic_correctness
|
||||
- examples/offline_inference/rlhf.py
|
||||
- examples/offline_inference/rlhf_colocate.py
|
||||
- tests/examples/offline_inference/data_parallel.py
|
||||
- tests/v1/test_async_llm_dp.py
|
||||
- tests/v1/test_external_lb_dp.py
|
||||
- tests/v1/test_internal_lb_dp.py
|
||||
- tests/v1/test_hybrid_lb_dp.py
|
||||
- tests/v1/engine/test_engine_core_client.py
|
||||
commands:
|
||||
# test with tp=2 and external_dp=2
|
||||
@ -167,12 +178,13 @@ steps:
|
||||
- python3 ../examples/offline_inference/data_parallel.py --enforce-eager
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_async_llm_dp.py
|
||||
- TP_SIZE=2 DP_SIZE=2 pytest -v -s v1/test_external_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_internal_lb_dp.py
|
||||
- TP_SIZE=1 DP_SIZE=4 pytest -v -s v1/test_hybrid_lb_dp.py
|
||||
- pytest -v -s v1/engine/test_engine_core_client.py::test_kv_cache_events_dp
|
||||
- pytest -v -s distributed/test_utils.py
|
||||
- pytest -v -s compile/test_basic_correctness.py
|
||||
- pytest -v -s distributed/test_pynccl.py
|
||||
- pytest -v -s distributed/test_events.py
|
||||
- pytest -v -s spec_decode/e2e/test_integration_dist_tp4.py
|
||||
# TODO: create a dedicated test section for multi-GPU example tests
|
||||
# when we have multiple distributed example tests
|
||||
- pushd ../examples/offline_inference
|
||||
@ -217,7 +229,7 @@ steps:
|
||||
##### 1 GPU test #####
|
||||
|
||||
- label: Regression Test # 5min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/test_regression
|
||||
@ -256,6 +268,7 @@ steps:
|
||||
- pytest -v -s v1/structured_output
|
||||
- pytest -v -s v1/spec_decode
|
||||
- pytest -v -s v1/kv_connector/unit
|
||||
- pytest -v -s v1/metrics
|
||||
- pytest -v -s v1/test_serial_utils.py
|
||||
- pytest -v -s v1/test_utils.py
|
||||
- pytest -v -s v1/test_oracle.py
|
||||
@ -264,11 +277,11 @@ steps:
|
||||
# VLLM_USE_FLASHINFER_SAMPLER or not on H100.
|
||||
- pytest -v -s v1/e2e
|
||||
# Integration test for streaming correctness (requires special branch).
|
||||
- pip install -U git+https://github.com/robertgshaw2-neuralmagic/lm-evaluation-harness.git@streaming-api
|
||||
- pip install -U git+https://github.com/robertgshaw2-redhat/lm-evaluation-harness.git@streaming-api
|
||||
- pytest -v -s entrypoints/openai/correctness/test_lmeval.py::test_lm_eval_accuracy_v1_engine
|
||||
|
||||
- label: Examples Test # 25min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
working_dir: "/vllm-workspace/examples"
|
||||
source_file_dependencies:
|
||||
- vllm/entrypoints
|
||||
@ -302,7 +315,7 @@ steps:
|
||||
|
||||
|
||||
- label: Platform Tests (CUDA)
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/cuda
|
||||
@ -320,19 +333,8 @@ steps:
|
||||
- pytest -v -s samplers
|
||||
- VLLM_USE_FLASHINFER_SAMPLER=1 pytest -v -s samplers
|
||||
|
||||
- label: Speculative decoding tests # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/spec_decode
|
||||
- tests/spec_decode
|
||||
- vllm/model_executor/models/eagle.py
|
||||
commands:
|
||||
- pytest -v -s spec_decode/e2e/test_multistep_correctness.py
|
||||
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py --ignore=spec_decode/e2e/test_mtp_correctness.py
|
||||
- pytest -v -s spec_decode/e2e/test_eagle_correctness.py
|
||||
|
||||
- label: LoRA Test %N # 15min each
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/lora
|
||||
- tests/lora
|
||||
@ -384,7 +386,7 @@ steps:
|
||||
- pytest -v -s kernels/core
|
||||
|
||||
- label: Kernels Attention Test %N
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/attention/
|
||||
- vllm/attention
|
||||
@ -395,7 +397,7 @@ steps:
|
||||
parallelism: 2
|
||||
|
||||
- label: Kernels Quantization Test %N
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- csrc/quantization/
|
||||
- vllm/model_executor/layers/quantization
|
||||
@ -414,7 +416,7 @@ steps:
|
||||
- pytest -v -s kernels/moe
|
||||
|
||||
- label: Kernels Mamba Test
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- csrc/mamba/
|
||||
- tests/kernels/mamba
|
||||
@ -422,7 +424,7 @@ steps:
|
||||
- pytest -v -s kernels/mamba
|
||||
|
||||
- label: Tensorizer Test # 11min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/model_loader
|
||||
@ -436,7 +438,6 @@ steps:
|
||||
|
||||
- label: Model Executor Test
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
soft_fail: true
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor
|
||||
- tests/model_executor
|
||||
@ -493,7 +494,7 @@ steps:
|
||||
- pytest -s entrypoints/openai/correctness/
|
||||
|
||||
- label: Encoder Decoder tests # 5min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
- tests/encoder_decoder
|
||||
@ -501,7 +502,7 @@ steps:
|
||||
- pytest -v -s encoder_decoder
|
||||
|
||||
- label: OpenAI-Compatible Tool Use # 20 min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
fast_check: false
|
||||
source_file_dependencies:
|
||||
- vllm/
|
||||
@ -613,7 +614,7 @@ steps:
|
||||
- pytest -v -s models/multimodal/generation/test_common.py -m 'split(group=1) and not core_model'
|
||||
|
||||
- label: Quantized Models Test
|
||||
mirror_hardwares: [amdexperimental, amdproduction]
|
||||
mirror_hardwares: [amdexperimental]
|
||||
source_file_dependencies:
|
||||
- vllm/model_executor/layers/quantization
|
||||
- tests/models/quantization
|
||||
@ -630,6 +631,18 @@ steps:
|
||||
# e.g. pytest -v -s models/encoder_decoder/vision_language/test_mllama.py
|
||||
# *To avoid merge conflicts, remember to REMOVE (not just comment out) them before merging the PR*
|
||||
|
||||
- label: Transformers Nightly Models Test
|
||||
working_dir: "/vllm-workspace/"
|
||||
optional: true
|
||||
commands:
|
||||
- pip install --upgrade git+https://github.com/huggingface/transformers
|
||||
- pytest -v -s tests/models/test_initialization.py
|
||||
- pytest -v -s tests/models/multimodal/processing/
|
||||
- pytest -v -s tests/models/multimodal/test_mapping.py
|
||||
- python3 examples/offline_inference/basic/chat.py
|
||||
- python3 examples/offline_inference/audio_language.py --model-type whisper
|
||||
- python3 examples/offline_inference/vision_language.py --model-type qwen2_5_vl
|
||||
|
||||
##### 1 GPU test #####
|
||||
##### multi gpus test #####
|
||||
|
||||
@ -704,10 +717,10 @@ steps:
|
||||
- pytest -v -s distributed/test_sequence_parallel.py
|
||||
# this test fails consistently.
|
||||
# TODO: investigate and fix
|
||||
# - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py
|
||||
- VLLM_USE_V1=0 CUDA_VISIBLE_DEVICES=0,1 pytest -v -s kv_transfer/test_disagg.py
|
||||
- CUDA_VISIBLE_DEVICES=0,1 pytest -v -s v1/shutdown
|
||||
- pytest -v -s models/multimodal/generation/test_maverick.py
|
||||
|
||||
- label: Plugin Tests (2 GPUs) # 40min
|
||||
mirror_hardwares: [amdexperimental]
|
||||
|
||||
6
.gemini/config.yaml
Normal file
6
.gemini/config.yaml
Normal file
@ -0,0 +1,6 @@
|
||||
# https://developers.google.com/gemini-code-assist/docs/customize-gemini-behavior-github
|
||||
have_fun: false # Just review the code
|
||||
code_review:
|
||||
comment_severity_threshold: HIGH # Reduce quantity of comments
|
||||
pull_request_opened:
|
||||
summary: false # Don't summarize the PR in a separate comment
|
||||
14
.github/CODEOWNERS
vendored
14
.github/CODEOWNERS
vendored
@ -16,6 +16,7 @@
|
||||
/vllm/lora @jeejeelee
|
||||
/vllm/reasoning @aarnphm
|
||||
/vllm/entrypoints @aarnphm
|
||||
/vllm/compilation @zou3519 @youkaichao @ProExpertProg
|
||||
CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
|
||||
# Any change to the VllmConfig changes can have a large user-facing impact,
|
||||
@ -42,7 +43,6 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
/tests/multimodal @DarkLight1337 @ywang96
|
||||
/tests/prefix_caching @comaniac @KuntaiDu
|
||||
/tests/quantization @mgoin @robertgshaw2-redhat
|
||||
/tests/spec_decode @njhill @LiuXiaoxuanPKU
|
||||
/tests/test_inputs.py @DarkLight1337 @ywang96
|
||||
/tests/v1/entrypoints/llm/test_struct_output_generate.py @mgoin @russellb @aarnphm
|
||||
/tests/v1/structured_output @mgoin @russellb @aarnphm
|
||||
@ -52,3 +52,15 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
|
||||
# Docs
|
||||
/docs @hmellor
|
||||
mkdocs.yaml @hmellor
|
||||
|
||||
# CPU
|
||||
/vllm/v1/worker/^cpu @bigPYJ1151
|
||||
/csrc/cpu @bigPYJ1151
|
||||
/vllm/platforms/cpu.py @bigPYJ1151
|
||||
/cmake/cpu_extension.cmake @bigPYJ1151
|
||||
/docker/Dockerfile.cpu @bigPYJ1151
|
||||
|
||||
# Intel GPU
|
||||
/vllm/v1/worker/^xpu @jikunshang
|
||||
/vllm/platforms/xpu.py @jikunshang
|
||||
/docker/Dockerfile.xpu @jikunshang
|
||||
|
||||
2
.github/ISSUE_TEMPLATE/750-RFC.yml
vendored
2
.github/ISSUE_TEMPLATE/750-RFC.yml
vendored
@ -46,7 +46,7 @@ body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: >
|
||||
Thanks for contributing 🎉!
|
||||
Thanks for contributing 🎉! The vLLM core team hosts a biweekly RFC review session at 9:30AM Pacific Time, while most RFCs can be discussed online, you can optionally sign up for a slot to discuss your RFC online [here](https://docs.google.com/document/d/1CiLVBZeIVfR7_PNAKVSusxpceywkoOOB78qoWqHvSZc/edit).
|
||||
- type: checkboxes
|
||||
id: askllm
|
||||
attributes:
|
||||
|
||||
3
.github/mergify.yml
vendored
3
.github/mergify.yml
vendored
@ -164,10 +164,7 @@ pull_request_rules:
|
||||
description: Automatically apply speculative-decoding label
|
||||
conditions:
|
||||
- or:
|
||||
- files~=^vllm/spec_decode/
|
||||
- files~=^vllm/v1/spec_decode/
|
||||
- files=vllm/model_executor/layers/spec_decode_base_sampler.py
|
||||
- files~=^tests/spec_decode/
|
||||
- files~=^tests/v1/spec_decode/
|
||||
- files~=^examples/.*(spec_decode|mlpspeculator|eagle|speculation).*\.py
|
||||
- files~=^vllm/model_executor/models/.*eagle.*\.py
|
||||
|
||||
2
.github/workflows/lint-and-deploy.yaml
vendored
2
.github/workflows/lint-and-deploy.yaml
vendored
@ -7,7 +7,7 @@ permissions:
|
||||
|
||||
jobs:
|
||||
lint-and-deploy:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-24.04-arm
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@11bd71901bbe5b1630ceea73d27597364c9af683 # v4.2.2
|
||||
|
||||
@ -21,7 +21,7 @@ repos:
|
||||
- id: ruff-format
|
||||
files: ^(.buildkite|benchmarks|examples)/.*
|
||||
- repo: https://github.com/crate-ci/typos
|
||||
rev: v1.32.0
|
||||
rev: v1.34.0
|
||||
hooks:
|
||||
- id: typos
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
@ -166,7 +166,7 @@ repos:
|
||||
language: python
|
||||
types: [python]
|
||||
pass_filenames: true
|
||||
files: vllm/config.py|tests/test_config.py
|
||||
files: vllm/config.py|tests/test_config.py|vllm/entrypoints/openai/cli_args.py
|
||||
# Keep `suggestion` last
|
||||
- id: suggestion
|
||||
name: Suggestion
|
||||
|
||||
@ -45,7 +45,7 @@ set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx942;gfx950;gfx1030;gfx1100;gfx1
|
||||
# requirements.txt files and should be kept consistent. The ROCm torch
|
||||
# versions are derived from docker/Dockerfile.rocm
|
||||
#
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.0")
|
||||
set(TORCH_SUPPORTED_VERSION_CUDA "2.7.1")
|
||||
set(TORCH_SUPPORTED_VERSION_ROCM "2.7.0")
|
||||
|
||||
#
|
||||
@ -171,16 +171,6 @@ if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
|
||||
endif()
|
||||
|
||||
#
|
||||
# Set nvcc fatbin compression.
|
||||
#
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8)
|
||||
list(APPEND VLLM_GPU_FLAGS "-Xfatbin" "-compress-all" "-compress-mode=size")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
#
|
||||
# Use FetchContent for C++ dependencies that are compiled as part of vLLM's build process.
|
||||
# setup.py will override FETCHCONTENT_BASE_DIR to play nicely with sccache.
|
||||
@ -306,7 +296,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"csrc/quantization/fp4/nvfp4_blockwise_moe_kernel.cu"
|
||||
"csrc/sparse/cutlass/sparse_scaled_mm_entry.cu"
|
||||
"csrc/cutlass_extensions/common.cpp"
|
||||
"csrc/attention/mla/cutlass_mla_entry.cu")
|
||||
"csrc/attention/mla/cutlass_mla_entry.cu"
|
||||
"csrc/quantization/fp8/per_token_group_quant.cu")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${VLLM_EXT_SRC}"
|
||||
@ -563,7 +554,8 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
cuda_archs_loose_intersection(MLA_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND MLA_ARCHS)
|
||||
set(SRCS
|
||||
"csrc/attention/mla/cutlass_mla_kernels.cu")
|
||||
"csrc/attention/mla/cutlass_mla_kernels.cu"
|
||||
"csrc/attention/mla/sm100_cutlass_mla_kernel.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${MLA_ARCHS}")
|
||||
@ -586,7 +578,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
# if it's possible to compile MoE kernels that use its output.
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "9.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x.cu")
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm90.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
@ -604,6 +596,26 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu")
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${SRCS}"
|
||||
CUDA_ARCHS "${SCALED_MM_ARCHS}")
|
||||
list(APPEND VLLM_EXT_SRC "${SRCS}")
|
||||
list(APPEND VLLM_GPU_FLAGS "-DENABLE_CUTLASS_MOE_SM100=1")
|
||||
message(STATUS "Building grouped_mm_c3x for archs: ${SCALED_MM_ARCHS}")
|
||||
else()
|
||||
if (NOT ${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
message(STATUS "Not building grouped_mm_c3x kernels as CUDA Compiler version is "
|
||||
"not >= 12.8, we recommend upgrading to CUDA 12.8 or later "
|
||||
"if you intend on running FP8 quantized MoE models on Blackwell.")
|
||||
else()
|
||||
message(STATUS "Not building grouped_mm_c3x as no compatible archs found "
|
||||
"in CUDA target architectures.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# moe_data.cu is used by all CUTLASS MoE kernels.
|
||||
cuda_archs_loose_intersection(CUTLASS_MOE_DATA_ARCHS "9.0a;10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.3 AND CUTLASS_MOE_DATA_ARCHS)
|
||||
@ -623,7 +635,7 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
"in CUDA target architectures.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
cuda_archs_loose_intersection(SCALED_MM_ARCHS "10.0a" "${CUDA_ARCHS}")
|
||||
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER_EQUAL 12.8 AND SCALED_MM_ARCHS)
|
||||
set(SRCS "csrc/quantization/cutlass_w8a8/moe/blockwise_scaled_group_mm_sm100.cu")
|
||||
@ -756,6 +768,14 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
list(APPEND VLLM_MOE_EXT_SRC "csrc/moe/moe_wna16.cu")
|
||||
endif()
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set(MOE_PERMUTE_SRC
|
||||
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
|
||||
"csrc/moe/moe_permute_unpermute_op.cu")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
|
||||
endif()
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${VLLM_MOE_EXT_SRC}"
|
||||
CUDA_ARCHS "${CUDA_ARCHS}")
|
||||
@ -824,17 +844,6 @@ if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(VLLM_GPU_LANG STREQUAL "CUDA")
|
||||
set(MOE_PERMUTE_SRC
|
||||
"csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu"
|
||||
"csrc/moe/moe_permute_unpermute_op.cu")
|
||||
|
||||
set_gencode_flags_for_srcs(
|
||||
SRCS "${MARLIN_PERMUTE_SRC}"
|
||||
CUDA_ARCHS "${MOE_PERMUTE_ARCHS}")
|
||||
|
||||
list(APPEND VLLM_MOE_EXT_SRC "${MOE_PERMUTE_SRC}")
|
||||
endif()
|
||||
message(STATUS "Enabling moe extension.")
|
||||
define_gpu_extension_target(
|
||||
_moe_C
|
||||
|
||||
@ -63,13 +63,11 @@ vLLM is fast with:
|
||||
- Speculative decoding
|
||||
- Chunked prefill
|
||||
|
||||
**Performance benchmark**: We include a performance benchmark at the end of [our blog post](https://blog.vllm.ai/2024/09/05/perf-update.html). It compares the performance of vLLM against other LLM serving engines ([TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM), [SGLang](https://github.com/sgl-project/sglang) and [LMDeploy](https://github.com/InternLM/lmdeploy)). The implementation is under [nightly-benchmarks folder](.buildkite/nightly-benchmarks/) and you can [reproduce](https://github.com/vllm-project/vllm/issues/8176) this benchmark using our one-click runnable script.
|
||||
|
||||
vLLM is flexible and easy to use with:
|
||||
|
||||
- Seamless integration with popular Hugging Face models
|
||||
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
|
||||
- Tensor parallelism and pipeline parallelism support for distributed inference
|
||||
- Tensor, pipeline, data and expert parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs and GPUs, PowerPC CPUs, TPU, and AWS Neuron
|
||||
|
||||
33
RELEASE.md
33
RELEASE.md
@ -52,3 +52,36 @@ After branch cut, we approach finalizing the release branch with clear criteria
|
||||
* Release branch specific changes (e.g. change version identifiers or CI fixes)
|
||||
|
||||
Please note: **No feature work allowed for cherry picks**. All PRs that are considered for cherry-picks need to be merged on trunk, the only exception are Release branch specific changes.
|
||||
|
||||
## Manual validations
|
||||
|
||||
### E2E Performance Validation
|
||||
|
||||
Before each release, we perform end-to-end performance validation to ensure no regressions are introduced. This validation uses the [vllm-benchmark workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) on PyTorch CI.
|
||||
|
||||
**Current Coverage:**
|
||||
* Models: Llama3, Llama4, and Mixtral
|
||||
* Hardware: NVIDIA H100 and AMD MI300x
|
||||
* *Note: Coverage may change based on new model releases and hardware availability*
|
||||
|
||||
**Performance Validation Process:**
|
||||
|
||||
**Step 1: Get Access**
|
||||
Request write access to the [pytorch/pytorch-integration-testing](https://github.com/pytorch/pytorch-integration-testing) repository to run the benchmark workflow.
|
||||
|
||||
**Step 2: Review Benchmark Setup**
|
||||
Familiarize yourself with the benchmark configurations:
|
||||
* [CUDA setup](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks/cuda)
|
||||
* [ROCm setup](https://github.com/pytorch/pytorch-integration-testing/tree/main/vllm-benchmarks/benchmarks/rocm)
|
||||
|
||||
**Step 3: Run the Benchmark**
|
||||
Navigate to the [vllm-benchmark workflow](https://github.com/pytorch/pytorch-integration-testing/actions/workflows/vllm-benchmark.yml) and configure:
|
||||
* **vLLM branch**: Set to the release branch (e.g., `releases/v0.9.2`)
|
||||
* **vLLM commit**: Set to the RC commit hash
|
||||
|
||||
**Step 4: Review Results**
|
||||
Once the workflow completes, benchmark results will be available on the [vLLM benchmark dashboard](https://hud.pytorch.org/benchmark/llms?repoName=vllm-project%2Fvllm) under the corresponding branch and commit.
|
||||
|
||||
**Step 5: Performance Comparison**
|
||||
Compare the current results against the previous release to verify no performance regressions have occurred. Here is an
|
||||
example of [v0.9.1 vs v0.9.2](https://hud.pytorch.org/benchmark/llms?startTime=Thu%2C%2017%20Apr%202025%2021%3A43%3A50%20GMT&stopTime=Wed%2C%2016%20Jul%202025%2021%3A43%3A50%20GMT&granularity=week&lBranch=releases/v0.9.1&lCommit=b6553be1bc75f046b00046a4ad7576364d03c835&rBranch=releases/v0.9.2&rCommit=a5dd03c1ebc5e4f56f3c9d3dc0436e9c582c978f&repoName=vllm-project%2Fvllm&benchmarkName=&modelName=All%20Models&backendName=All%20Backends&modeName=All%20Modes&dtypeName=All%20DType&deviceName=All%20Devices&archName=All%20Platforms).
|
||||
|
||||
@ -98,7 +98,7 @@ Then run the benchmarking script
|
||||
```bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--endpoint /v1/completions \
|
||||
@ -111,25 +111,25 @@ If successful, you will see the following output
|
||||
|
||||
```
|
||||
============ Serving Benchmark Result ============
|
||||
Successful requests: 10
|
||||
Benchmark duration (s): 5.78
|
||||
Total input tokens: 1369
|
||||
Total generated tokens: 2212
|
||||
Request throughput (req/s): 1.73
|
||||
Output token throughput (tok/s): 382.89
|
||||
Total Token throughput (tok/s): 619.85
|
||||
Successful requests: 10
|
||||
Benchmark duration (s): 5.78
|
||||
Total input tokens: 1369
|
||||
Total generated tokens: 2212
|
||||
Request throughput (req/s): 1.73
|
||||
Output token throughput (tok/s): 382.89
|
||||
Total Token throughput (tok/s): 619.85
|
||||
---------------Time to First Token----------------
|
||||
Mean TTFT (ms): 71.54
|
||||
Median TTFT (ms): 73.88
|
||||
P99 TTFT (ms): 79.49
|
||||
Mean TTFT (ms): 71.54
|
||||
Median TTFT (ms): 73.88
|
||||
P99 TTFT (ms): 79.49
|
||||
-----Time per Output Token (excl. 1st token)------
|
||||
Mean TPOT (ms): 7.91
|
||||
Median TPOT (ms): 7.96
|
||||
P99 TPOT (ms): 8.03
|
||||
Mean TPOT (ms): 7.91
|
||||
Median TPOT (ms): 7.96
|
||||
P99 TPOT (ms): 8.03
|
||||
---------------Inter-token Latency----------------
|
||||
Mean ITL (ms): 7.74
|
||||
Median ITL (ms): 7.70
|
||||
P99 ITL (ms): 8.39
|
||||
Mean ITL (ms): 7.74
|
||||
Median ITL (ms): 7.70
|
||||
P99 ITL (ms): 8.39
|
||||
==================================================
|
||||
```
|
||||
|
||||
@ -141,7 +141,7 @@ If the dataset you want to benchmark is not supported yet in vLLM, even then you
|
||||
{"prompt": "What is the capital of India?"}
|
||||
{"prompt": "What is the capital of Iran?"}
|
||||
{"prompt": "What is the capital of China?"}
|
||||
```
|
||||
```
|
||||
|
||||
```bash
|
||||
# start server
|
||||
@ -150,7 +150,7 @@ VLLM_USE_V1=1 vllm serve meta-llama/Llama-3.1-8B-Instruct --disable-log-requests
|
||||
|
||||
```bash
|
||||
# run benchmarking script
|
||||
python3 benchmarks/benchmark_serving.py --port 9001 --save-result --save-detailed \
|
||||
vllm bench serve --port 9001 --save-result --save-detailed \
|
||||
--backend vllm \
|
||||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||||
--endpoint /v1/completions \
|
||||
@ -174,7 +174,7 @@ vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
|
||||
```
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
@ -194,7 +194,7 @@ VLLM_USE_V1=1 vllm serve meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
```
|
||||
|
||||
``` bash
|
||||
python3 benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--model meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
--dataset-name hf \
|
||||
--dataset-path likaixin/InstructCoder \
|
||||
@ -210,7 +210,7 @@ vllm serve Qwen/Qwen2-VL-7B-Instruct --disable-log-requests
|
||||
**`lmms-lab/LLaVA-OneVision-Data`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
@ -224,7 +224,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
**`Aeala/ShareGPT_Vicuna_unfiltered`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend openai-chat \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--endpoint /v1/chat/completions \
|
||||
@ -237,7 +237,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
**`AI-MO/aimo-validation-aime`**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path AI-MO/aimo-validation-aime \
|
||||
@ -248,7 +248,7 @@ python3 vllm/benchmarks/benchmark_serving.py \
|
||||
**`philschmid/mt-bench`**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--model Qwen/QwQ-32B \
|
||||
--dataset-name hf \
|
||||
--dataset-path philschmid/mt-bench \
|
||||
@ -261,7 +261,7 @@ When using OpenAI-compatible backends such as `vllm`, optional sampling
|
||||
parameters can be specified. Example client command:
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--endpoint /v1/completions \
|
||||
@ -296,7 +296,7 @@ The following arguments can be used to control the ramp-up:
|
||||
<br/>
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
vllm bench throughput \
|
||||
--model NousResearch/Hermes-3-Llama-3.1-8B \
|
||||
--dataset-name sonnet \
|
||||
--dataset-path vllm/benchmarks/sonnet.txt \
|
||||
@ -314,7 +314,7 @@ Total num output tokens: 1500
|
||||
**VisionArena Benchmark for Vision Language Models**
|
||||
|
||||
``` bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
vllm bench throughput \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
@ -336,7 +336,7 @@ Total num output tokens: 1280
|
||||
``` bash
|
||||
VLLM_WORKER_MULTIPROC_METHOD=spawn \
|
||||
VLLM_USE_V1=1 \
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
vllm bench throughput \
|
||||
--dataset-name=hf \
|
||||
--dataset-path=likaixin/InstructCoder \
|
||||
--model=meta-llama/Meta-Llama-3-8B-Instruct \
|
||||
@ -360,7 +360,7 @@ Total num output tokens: 204800
|
||||
**`lmms-lab/LLaVA-OneVision-Data`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
vllm bench throughput \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
@ -373,7 +373,7 @@ python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
**`Aeala/ShareGPT_Vicuna_unfiltered`**
|
||||
|
||||
```bash
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
vllm bench throughput \
|
||||
--model Qwen/Qwen2-VL-7B-Instruct \
|
||||
--backend vllm-chat \
|
||||
--dataset-name hf \
|
||||
@ -385,7 +385,7 @@ python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
**`AI-MO/aimo-validation-aime`**
|
||||
|
||||
```bash
|
||||
python3 benchmarks/benchmark_throughput.py \
|
||||
vllm bench throughput \
|
||||
--model Qwen/QwQ-32B \
|
||||
--backend vllm \
|
||||
--dataset-name hf \
|
||||
@ -399,7 +399,7 @@ python3 benchmarks/benchmark_throughput.py \
|
||||
``` bash
|
||||
# download dataset
|
||||
# wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
python3 vllm/benchmarks/benchmark_throughput.py \
|
||||
vllm bench throughput \
|
||||
--model meta-llama/Llama-2-7b-hf \
|
||||
--backend vllm \
|
||||
--dataset_path <your data path>/ShareGPT_V3_unfiltered_cleaned_split.json \
|
||||
|
||||
141
benchmarks/auto_tune/README.md
Normal file
141
benchmarks/auto_tune/README.md
Normal file
@ -0,0 +1,141 @@
|
||||
# Automated vLLM Server Parameter Tuning
|
||||
|
||||
This script automates the process of finding the optimal server parameter combination (`max-num-seqs` and `max-num-batched-tokens`) to maximize throughput for a vLLM server. It also supports additional constraints such as E2E latency and prefix cache hit rate.
|
||||
|
||||
## Table of Contents
|
||||
- [Prerequisites](#prerequisites)
|
||||
- [Configuration](#configuration)
|
||||
- [How to Run](#how-to-run)
|
||||
- [Example Use Cases](#example-use-cases)
|
||||
- [Output](#output)
|
||||
- [How It Works](#how-it-works)
|
||||
|
||||
## Prerequisites
|
||||
|
||||
Before running the script, please ensure the following steps are completed:
|
||||
|
||||
1. **Clone vLLM & Set Up Branch**: Clone the vLLM repository and check out to your desired branch.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/vllm-project/vllm.git
|
||||
cd vllm
|
||||
# git checkout <your-branch>
|
||||
```
|
||||
|
||||
1. **Install Environment**: Install or update the correct running environment. For TPU usage, activate your `conda` environment and install the corresponding `torch` and `torch_xla` versions.
|
||||
|
||||
2. **Model Configuration**: If you are using a customized model, ensure its configuration files are correctly placed and accessible.
|
||||
|
||||
## Configuration
|
||||
|
||||
You must set the following variables at the top of the script before execution.
|
||||
|
||||
| Variable | Description | Example Value |
|
||||
| --- | --- | --- |
|
||||
| `BASE` | **Required.** The absolute path to the parent directory of your vLLM repository directory. | `"$HOME"` |
|
||||
| `MODEL` | **Required.** The Hugging Face model identifier to be served by vllm. | `"meta-llama/Llama-3.1-8B-Instruct"` |
|
||||
| `SYSTEM`| **Required.** The hardware you are running on. Choices: `TPU` or `GPU`. (For other systems, it might not support saving profiles) | `"TPU"` |
|
||||
| `TP` | **Required.** The tensor-parallelism size. | `1` |
|
||||
| `DOWNLOAD_DIR` | **Required.** Directory to download and load model weights from. | `""` (default download path) |
|
||||
| `INPUT_LEN` | **Required.** Request input length. | `4000` |
|
||||
| `OUTPUT_LEN` | **Required.** Request output length. | `16` |
|
||||
| `MAX_MODEL_LEN` | **Required.** Max model length. | `4096` |
|
||||
| `MIN_CACHE_HIT_PCT` | Prefix cache hit rate in percentage (0-100). Set to `0` to disable. | `60` |
|
||||
| `MAX_LATENCY_ALLOWED_MS` | The maximum allowed P99 end-to-end latency in milliseconds. Set to a very large number (e.g., `100000000000`) to effectively ignore the latency constraint. | `500` |
|
||||
| `NUM_SEQS_LIST` | A space-separated string of `max-num-seqs` values to test. | `"128 256"` |
|
||||
| `NUM_BATCHED_TOKENS_LIST` | A space-separated string of `max-num-batched-tokens` values to test. | `"1024 2048 4096"` |
|
||||
|
||||
**Note**: The default `NUM_SEQS_LIST` and `NUM_BATCHED_TOKENS_LIST` are set for medium-sized inputs/outputs. For very short contexts (e.g., 20 input, 20 output tokens), you may need to test larger values for `max-num-seqs`.
|
||||
|
||||
## How to Run
|
||||
|
||||
1. **Configure**: Edit the script and set the variables in the [Configuration](#configuration) section.
|
||||
2. **Execute**: Run the script. Since the process can take a long time, it is highly recommended to use a terminal multiplexer like `tmux` or `screen` to prevent the script from stopping if your connection is lost.
|
||||
|
||||
```
|
||||
cd <FOLDER_OF_THIS_SCRIPT>
|
||||
bash auto_tune.sh
|
||||
```
|
||||
|
||||
Please note that the `bash auto_tune.sh` command cannot contain full or partial path with keyword `vllm`, otherwise `pkill -f vllm` command will also kill this script itself.
|
||||
|
||||
## Example Use Cases
|
||||
|
||||
Here are a few examples of how to configure the script for different goals:
|
||||
|
||||
### 1. Maximize Throughput (No Latency Constraint)
|
||||
- **Goal**: Find the best `max-num-seqs` and `max-num-batched-tokens` to get the highest possible throughput for 1800 input tokens and 20 output tokens.
|
||||
- **Configuration**:
|
||||
|
||||
```bash
|
||||
INPUT_LEN=1800
|
||||
OUTPUT_LEN=20
|
||||
MAX_MODEL_LEN=2048
|
||||
MIN_CACHE_HIT_PCT=0
|
||||
MAX_LATENCY_ALLOWED_MS=100000000000 # A very large number
|
||||
```
|
||||
|
||||
#### 2. Maximize Throughput with a Latency Requirement
|
||||
- **Goal**: Find the best server parameters when P99 end-to-end latency must be below 500ms.
|
||||
- **Configuration**:
|
||||
|
||||
```bash
|
||||
INPUT_LEN=1800
|
||||
OUTPUT_LEN=20
|
||||
MAX_MODEL_LEN=2048
|
||||
MIN_CACHE_HIT_PCT=0
|
||||
MAX_LATENCY_ALLOWED_MS=500
|
||||
```
|
||||
|
||||
#### 3. Maximize Throughput with Prefix Caching and Latency Requirements
|
||||
- **Goal**: Find the best server parameters assuming a 60% prefix cache hit rate and a latency requirement of 500ms.
|
||||
- **Configuration**:
|
||||
|
||||
```bash
|
||||
INPUT_LEN=1800
|
||||
OUTPUT_LEN=20
|
||||
MAX_MODEL_LEN=2048
|
||||
MIN_CACHE_HIT_PCT=60
|
||||
MAX_LATENCY_ALLOWED_MS=500
|
||||
```
|
||||
|
||||
## Output
|
||||
|
||||
After the script finishes, you will find the results in a new, timestamped directory created inside `$BASE/auto-benchmark/`.
|
||||
|
||||
- **Log Files**: The directory (`$BASE/auto-benchmark/YYYY_MM_DD_HH_MM/`) contains detailed logs for each run:
|
||||
- `vllm_log_...txt`: The log output from the vLLM server for each parameter combination.
|
||||
- `bm_log_...txt`: The log output from the `vllm bench serve` command for each benchmark run.
|
||||
|
||||
- **Final Result Summary**: A file named `result.txt` is created in the log directory. It contains a summary of each tested combination and concludes with the overall best parameters found.
|
||||
|
||||
```
|
||||
# Example result.txt content
|
||||
hash:a1b2c3d4...
|
||||
max_num_seqs: 128, max_num_batched_tokens: 2048, request_rate: 10.0, e2el: 450.5, throughput: 9.8, goodput: 9.8
|
||||
max_num_seqs: 128, max_num_batched_tokens: 4096 does not meet latency requirement 500
|
||||
...
|
||||
best_max_num_seqs: 256, best_num_batched_tokens: 2048, best_throughput: 12.5, profile saved in: /home/user/vllm/auto-benchmark/2024_08_01_10_30/profile
|
||||
```
|
||||
|
||||
If it cannot find the best parameters, the final row will be `best_max_num_seqs: 0, best_num_batched_tokens: 0, best_throughput: 0`. This can be due to either the server not starting properly, or the latency requirement being too strict.
|
||||
|
||||
- **Profiler Trace**: A directory named `profile` is created inside the log directory. It contains the profiler trace file (e.g., `.xplane.pb` for TPU or a `.json` trace for GPU) from the single best-performing run.
|
||||
|
||||
## How It Works
|
||||
|
||||
The script follows a systematic process to find the optimal parameters:
|
||||
|
||||
1. **Find Max GPU Memory Utilization**: The script first determines the highest safe `gpu-memory-utilization` (starting from 0.98 and decreasing) that does not cause an Out-Of-Memory (OOM) error when launching the server. This ensures the benchmark runs use the maximum available memory without crashing.
|
||||
|
||||
2. **Iterate and Benchmark**: It then enters a nested loop, iterating through every combination of `max-num-seqs` and `max-num-batched-tokens` provided in the configuration lists.
|
||||
|
||||
3. **Latency-Aware Throughput Search**: For each parameter combination:
|
||||
- The vLLM server is started.
|
||||
- A benchmark is first run with an infinite request rate (`--request-rate inf`).
|
||||
- If the resulting P99 E2E latency is within the `MAX_LATENCY_ALLOWED_MS` limit, this throughput is considered the maximum for this configuration.
|
||||
- If the latency is too high, the script performs a search by iteratively decreasing the request rate until the latency constraint is met. This finds the highest sustainable throughput for the given parameters and latency requirement.
|
||||
|
||||
4. **Track Best Result**: Throughout the process, the script tracks the parameter combination that has yielded the highest valid throughput so far.
|
||||
|
||||
5. **Profile Collection**: For the best-performing run, the script saves the vLLM profiler output, which can be used for deep-dive performance analysis with tools like TensorBoard.
|
||||
@ -1,45 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
|
||||
# The current server parameter combination is max_num_seqs and max_num_batched_tokens
|
||||
# It also supports additional requirement: e2e latency and prefix cache.
|
||||
|
||||
# Pre-requisite:
|
||||
# 1. Checkout to your branch, install/ update the correct running env. For TPU, activate conda env and install the corresponding torch, xla version.
|
||||
# 2. If the model is customized, replace the MODEL's config with the customized config.
|
||||
# 3. Set variables (ALL REQUIRED)
|
||||
# BASE: your directory for vllm repo
|
||||
# MODEL: the model served by vllm
|
||||
# SYSTEM: the hardware, choice TPU or GPU, for other systems, "get best profile" might not support.
|
||||
# TP: ways of tensor parallelism
|
||||
# DOWNLOAD_DIR: directory to download and load model weights.
|
||||
# INPUT_LEN: request input len
|
||||
# OUTPUT_LEN: request output len
|
||||
# MIN_CACHE_HIT_PCT: prefix cache rate
|
||||
# MAX_LATENCY_ALLOWED_MS: (e2e) latency requirement. If there's no latency requirement, set it to a large number like 1000000000
|
||||
# NUM_SEQS_LIST: a list of `max-num-seqs` you want to loop with.
|
||||
# NUM_BATCHED_TOKENS_LIST: a list of `max-num-batched-tokens` you want to loop with.
|
||||
# Note that the default NUM_SEQS_LIST and NUM_BATCHED_TOKENS_LIST are set for medium size input/output len, for extra short context (such as 20:20), you might need to include larger numbers in NUM_SEQS_LIST.
|
||||
# 4. Run the script, it might take a long time, you can use tmux to avoid the script stop if disconnection happens.
|
||||
# 5. The final result will be saved in RESULT file.
|
||||
|
||||
|
||||
# Example use cases
|
||||
# 1. Given input_len=1800, output_len=20, what's the best max_num_seqs and max_num_batched_tokens to get highest throughput?
|
||||
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=100000000000
|
||||
# 2. If we have latency requirement to be lower than 500ms, what's the best server parameter?
|
||||
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=0, MAX_LATENCY_ALLOWED_MS=500
|
||||
# 3. If we want to reach 60% prefix cache, what's the best server parameter?
|
||||
# Use INPUT_LEN=1800, OUTPUT_LEN=20, MIN_CACHE_HIT_PCT=60, MAX_LATENCY_ALLOWED_MS=500
|
||||
# This script aims to tune the best server parameter combinations to maximize throughput for given requirement.
|
||||
# See details in README (benchmarks/auto_tune/README.md).
|
||||
|
||||
TAG=$(date +"%Y_%m_%d_%H_%M")
|
||||
BASE=""
|
||||
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
||||
BASE="$SCRIPT_DIR/../../.."
|
||||
MODEL="meta-llama/Llama-3.1-8B-Instruct"
|
||||
SYSTEM="TPU"
|
||||
TP=1
|
||||
DOWNLOAD_DIR=""
|
||||
INPUT_LEN=4000
|
||||
OUTPUT_LEN=16
|
||||
MAX_MODEL_LEN=4096
|
||||
MIN_CACHE_HIT_PCT=0
|
||||
MAX_LATENCY_ALLOWED_MS=100000000000
|
||||
NUM_SEQS_LIST="128 256"
|
||||
@ -65,6 +38,13 @@ current_hash=$(git rev-parse HEAD)
|
||||
echo "hash:$current_hash" >> "$RESULT"
|
||||
echo "current_hash: $current_hash"
|
||||
|
||||
TOTAL_LEN=$((INPUT_LEN + OUTPUT_LEN))
|
||||
RED='\033[0;31m'
|
||||
if (( TOTAL_LEN > MAX_MODEL_LEN )); then
|
||||
echo -e "${RED}FAILED: INPUT_LEN($INPUT_LEN) + OUTPUT_LEN($OUTPUT_LEN) = $TOTAL_LEN, which is > MAX_MODEL_LEN = $MAX_MODEL_LEN.\033[0m" >&2
|
||||
exit 1
|
||||
fi
|
||||
|
||||
best_throughput=0
|
||||
best_max_num_seqs=0
|
||||
best_num_batched_tokens=0
|
||||
@ -76,7 +56,7 @@ start_server() {
|
||||
local max_num_batched_tokens=$3
|
||||
local vllm_log=$4
|
||||
local profile_dir=$5
|
||||
|
||||
|
||||
pkill -f vllm
|
||||
|
||||
VLLM_USE_V1=1 VLLM_SERVER_DEV_MODE=1 VLLM_TORCH_PROFILER_DIR=$profile_dir vllm serve $MODEL \
|
||||
@ -89,13 +69,13 @@ start_server() {
|
||||
--enable-prefix-caching \
|
||||
--load-format dummy \
|
||||
--download-dir "$DOWNLOAD_DIR" \
|
||||
--max-model-len $(( INPUT_LEN+OUTPUT_LEN )) > "$vllm_log" 2>&1 &
|
||||
--max-model-len $MAX_MODEL_LEN > "$vllm_log" 2>&1 &
|
||||
|
||||
# wait for 10 minutes...
|
||||
server_started=0
|
||||
for i in {1..60}; do
|
||||
for i in {1..60}; do
|
||||
RESPONSE=$(curl -s -X GET "http://0.0.0.0:8004/health" -w "%{http_code}" -o /dev/stdout)
|
||||
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
|
||||
STATUS_CODE=$(echo "$RESPONSE" | tail -n 1)
|
||||
if [[ "$STATUS_CODE" -eq 200 ]]; then
|
||||
server_started=1
|
||||
break
|
||||
@ -118,10 +98,10 @@ update_best_profile() {
|
||||
selected_profile_file=
|
||||
if [[ "$SYSTEM" == "TPU" ]]; then
|
||||
selected_profile_file="${sorted_paths[$profile_index]}/*.xplane.pb"
|
||||
fi
|
||||
fi
|
||||
if [[ "$SYSTEM" == "GPU" ]]; then
|
||||
selected_profile_file="${sorted_paths[$profile_index]}"
|
||||
fi
|
||||
fi
|
||||
rm -f $PROFILE_PATH/*
|
||||
cp $selected_profile_file $PROFILE_PATH
|
||||
}
|
||||
@ -149,17 +129,18 @@ run_benchmark() {
|
||||
echo "server started."
|
||||
fi
|
||||
echo
|
||||
|
||||
|
||||
echo "run benchmark test..."
|
||||
meet_latency_requirement=0
|
||||
# get a basic qps by using request-rate inf
|
||||
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_inf.txt"
|
||||
prefix_len=$(( INPUT_LEN * MIN_CACHE_HIT_PCT / 100 ))
|
||||
python benchmarks/benchmark_serving.py \
|
||||
adjusted_input_len=$(( INPUT_LEN - prefix_len ))
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name random \
|
||||
--random-input-len $INPUT_LEN \
|
||||
--random-input-len $adjusted_input_len \
|
||||
--random-output-len $OUTPUT_LEN \
|
||||
--ignore-eos \
|
||||
--disable-tqdm \
|
||||
@ -188,11 +169,11 @@ run_benchmark() {
|
||||
curl -X POST http://0.0.0.0:8004/reset_prefix_cache
|
||||
sleep 5
|
||||
bm_log="$LOG_FOLDER/bm_log_${max_num_seqs}_${max_num_batched_tokens}_requestrate_${request_rate}.txt"
|
||||
python benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model $MODEL \
|
||||
--dataset-name random \
|
||||
--random-input-len $INPUT_LEN \
|
||||
--random-input-len $adjusted_input_len \
|
||||
--random-output-len $OUTPUT_LEN \
|
||||
--ignore-eos \
|
||||
--disable-tqdm \
|
||||
@ -273,4 +254,3 @@ done
|
||||
echo "finish permutations"
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH"
|
||||
echo "best_max_num_seqs: $best_max_num_seqs, best_num_batched_tokens: $best_num_batched_tokens, best_throughput: $best_throughput, profile saved in: $PROFILE_PATH" >> "$RESULT"
|
||||
|
||||
@ -324,6 +324,9 @@ class RandomDataset(BenchmarkDataset):
|
||||
input_low = int(real_input_len * (1 - range_ratio))
|
||||
input_high = int(real_input_len * (1 + range_ratio))
|
||||
output_low = int(output_len * (1 - range_ratio))
|
||||
# Ensure the lower bound for output length is at least 1 to prevent
|
||||
# sampling 0 tokens, which can cause request failures.
|
||||
output_low = max(output_low, 1)
|
||||
output_high = int(output_len * (1 + range_ratio))
|
||||
|
||||
# Add logging for debugging
|
||||
|
||||
@ -11,6 +11,7 @@ from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
from typing_extensions import deprecated
|
||||
|
||||
import vllm.envs as envs
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
@ -34,6 +35,10 @@ def save_to_pytorch_benchmark_format(
|
||||
write_to_json(pt_file, pt_records)
|
||||
|
||||
|
||||
@deprecated(
|
||||
"benchmark_latency.py is deprecated and will be removed in a "
|
||||
"future version. Please use 'vllm bench latency' instead.",
|
||||
)
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
|
||||
|
||||
@ -30,7 +30,7 @@ import os
|
||||
import random
|
||||
import time
|
||||
import warnings
|
||||
from collections.abc import AsyncGenerator, Iterable
|
||||
from collections.abc import Iterable
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any, Literal, Optional
|
||||
@ -38,6 +38,7 @@ from typing import Any, Literal, Optional
|
||||
import numpy as np
|
||||
from tqdm.asyncio import tqdm
|
||||
from transformers import PreTrainedTokenizerBase
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from backend_request_func import (
|
||||
ASYNC_REQUEST_FUNCS,
|
||||
@ -73,6 +74,7 @@ from benchmark_dataset import (
|
||||
VisionArenaDataset,
|
||||
)
|
||||
from benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json
|
||||
from vllm.benchmarks.serve import get_request
|
||||
|
||||
MILLISECONDS_TO_SECONDS_CONVERSION = 1000
|
||||
|
||||
@ -107,101 +109,6 @@ class BenchmarkMetrics:
|
||||
percentiles_e2el_ms: list[tuple[float, float]]
|
||||
|
||||
|
||||
def _get_current_request_rate(
|
||||
ramp_up_strategy: Optional[Literal["linear", "exponential"]],
|
||||
ramp_up_start_rps: Optional[int],
|
||||
ramp_up_end_rps: Optional[int],
|
||||
request_index: int,
|
||||
total_requests: int,
|
||||
request_rate: float,
|
||||
) -> float:
|
||||
if (
|
||||
ramp_up_strategy
|
||||
and ramp_up_start_rps is not None
|
||||
and ramp_up_end_rps is not None
|
||||
):
|
||||
progress = request_index / max(total_requests - 1, 1)
|
||||
if ramp_up_strategy == "linear":
|
||||
increase = (ramp_up_end_rps - ramp_up_start_rps) * progress
|
||||
return ramp_up_start_rps + increase
|
||||
elif ramp_up_strategy == "exponential":
|
||||
ratio = ramp_up_end_rps / ramp_up_start_rps
|
||||
return ramp_up_start_rps * (ratio**progress)
|
||||
else:
|
||||
raise ValueError(f"Unknown ramp-up strategy: {ramp_up_strategy}")
|
||||
return request_rate
|
||||
|
||||
|
||||
async def get_request(
|
||||
input_requests: list[SampleRequest],
|
||||
request_rate: float,
|
||||
burstiness: float = 1.0,
|
||||
ramp_up_strategy: Optional[Literal["linear", "exponential"]] = None,
|
||||
ramp_up_start_rps: Optional[int] = None,
|
||||
ramp_up_end_rps: Optional[int] = None,
|
||||
) -> AsyncGenerator[tuple[SampleRequest, float], None]:
|
||||
"""
|
||||
Asynchronously generates requests at a specified rate
|
||||
with OPTIONAL burstiness and OPTIONAL ramp-up strategy.
|
||||
|
||||
Args:
|
||||
input_requests:
|
||||
A list of input requests, each represented as a SampleRequest.
|
||||
request_rate:
|
||||
The rate at which requests are generated (requests/s).
|
||||
burstiness (optional):
|
||||
The burstiness factor of the request generation.
|
||||
Only takes effect when request_rate is not inf.
|
||||
Default value is 1, which follows a Poisson process.
|
||||
Otherwise, the request intervals follow a gamma distribution.
|
||||
A lower burstiness value (0 < burstiness < 1) results
|
||||
in more bursty requests, while a higher burstiness value
|
||||
(burstiness > 1) results in a more uniform arrival of requests.
|
||||
ramp_up_strategy (optional):
|
||||
The ramp-up strategy. Can be "linear" or "exponential".
|
||||
If None, uses constant request rate (specified by request_rate).
|
||||
ramp_up_start_rps (optional):
|
||||
The starting request rate for ramp-up.
|
||||
ramp_up_end_rps (optional):
|
||||
The ending request rate for ramp-up.
|
||||
"""
|
||||
assert burstiness > 0, (
|
||||
f"A positive burstiness factor is expected, but given {burstiness}."
|
||||
)
|
||||
# Convert to list to get length for ramp-up calculations
|
||||
if isinstance(input_requests, Iterable) and not isinstance(input_requests, list):
|
||||
input_requests = list(input_requests)
|
||||
|
||||
total_requests = len(input_requests)
|
||||
request_index = 0
|
||||
|
||||
for request in input_requests:
|
||||
current_request_rate = _get_current_request_rate(
|
||||
ramp_up_strategy,
|
||||
ramp_up_start_rps,
|
||||
ramp_up_end_rps,
|
||||
request_index,
|
||||
total_requests,
|
||||
request_rate,
|
||||
)
|
||||
|
||||
yield request, current_request_rate
|
||||
|
||||
request_index += 1
|
||||
|
||||
if current_request_rate == float("inf"):
|
||||
# If the request rate is infinity, then we don't need to wait.
|
||||
continue
|
||||
|
||||
theta = 1.0 / (current_request_rate * burstiness)
|
||||
|
||||
# Sample the request interval from the gamma distribution.
|
||||
# If burstiness is 1, it follows exponential distribution.
|
||||
interval = np.random.gamma(shape=burstiness, scale=theta)
|
||||
# The next request will be sent after the interval.
|
||||
await asyncio.sleep(interval)
|
||||
|
||||
|
||||
def calculate_metrics(
|
||||
input_requests: list[SampleRequest],
|
||||
outputs: list[RequestFuncOutput],
|
||||
@ -687,6 +594,10 @@ def save_to_pytorch_benchmark_format(
|
||||
write_to_json(pt_file, pt_records)
|
||||
|
||||
|
||||
@deprecated(
|
||||
"benchmark_serving.py is deprecated and will be removed in a future "
|
||||
"version. Please use 'vllm bench serve' instead.",
|
||||
)
|
||||
def main(args: argparse.Namespace):
|
||||
print(args)
|
||||
random.seed(args.seed)
|
||||
|
||||
@ -15,6 +15,7 @@ import torch
|
||||
import uvloop
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerBase
|
||||
from typing_extensions import deprecated
|
||||
|
||||
from benchmark_dataset import (
|
||||
AIMODataset,
|
||||
@ -167,7 +168,8 @@ async def run_vllm_async(
|
||||
from vllm import SamplingParams
|
||||
|
||||
async with build_async_engine_client_from_engine_args(
|
||||
engine_args, disable_frontend_multiprocessing
|
||||
engine_args,
|
||||
disable_frontend_multiprocessing=disable_frontend_multiprocessing,
|
||||
) as llm:
|
||||
model_config = await llm.get_model_config()
|
||||
assert all(
|
||||
@ -381,6 +383,10 @@ def get_requests(args, tokenizer):
|
||||
return dataset_cls(**common_kwargs).sample(**sample_kwargs)
|
||||
|
||||
|
||||
@deprecated(
|
||||
"benchmark_throughput.py is deprecated and will be removed in a "
|
||||
"future version. Please use 'vllm bench throughput' instead.",
|
||||
)
|
||||
def main(args: argparse.Namespace):
|
||||
if args.seed is None:
|
||||
args.seed = 0
|
||||
|
||||
@ -3,7 +3,7 @@
|
||||
# benchmark the overhead of disaggregated prefill.
|
||||
# methodology:
|
||||
# - send all request to prefill vLLM instance. It will buffer KV cache.
|
||||
# - then send all request to decode instance.
|
||||
# - then send all request to decode instance.
|
||||
# - The TTFT of decode instance is the overhead.
|
||||
|
||||
set -ex
|
||||
@ -12,6 +12,8 @@ kill_gpu_processes() {
|
||||
# kill all processes on GPU.
|
||||
pgrep pt_main_thread | xargs -r kill -9
|
||||
pgrep python3 | xargs -r kill -9
|
||||
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
|
||||
pgrep VLLM | xargs -r kill -9
|
||||
sleep 10
|
||||
|
||||
# remove vllm config file
|
||||
@ -61,7 +63,7 @@ benchmark() {
|
||||
--gpu-memory-utilization 0.6 \
|
||||
--kv-transfer-config \
|
||||
'{"kv_connector":"PyNcclConnector","kv_role":"kv_producer","kv_rank":0,"kv_parallel_size":2,"kv_buffer_size":5e9}' &
|
||||
|
||||
|
||||
|
||||
CUDA_VISIBLE_DEVICES=1 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
@ -76,38 +78,38 @@ benchmark() {
|
||||
wait_for_server 8200
|
||||
|
||||
# let the prefill instance finish prefill
|
||||
python3 ../benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--sonnet-input-len $input_len \
|
||||
--sonnet-output-len "$output_len" \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--num-prompts $num_prompts \
|
||||
--port 8100 \
|
||||
--save-result \
|
||||
--result-dir $results_folder \
|
||||
--result-filename disagg_prefill_tp1.json \
|
||||
--request-rate "inf"
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--sonnet-input-len $input_len \
|
||||
--sonnet-output-len "$output_len" \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--num-prompts $num_prompts \
|
||||
--port 8100 \
|
||||
--save-result \
|
||||
--result-dir $results_folder \
|
||||
--result-filename disagg_prefill_tp1.json \
|
||||
--request-rate "inf"
|
||||
|
||||
|
||||
# send the request to decode.
|
||||
# The TTFT of this command will be the overhead of disagg prefill impl.
|
||||
python3 ../benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--sonnet-input-len $input_len \
|
||||
--sonnet-output-len "$output_len" \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--num-prompts $num_prompts \
|
||||
--port 8200 \
|
||||
--save-result \
|
||||
--result-dir $results_folder \
|
||||
--result-filename disagg_prefill_tp1_overhead.json \
|
||||
--request-rate "$qps"
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--sonnet-input-len $input_len \
|
||||
--sonnet-output-len "$output_len" \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--num-prompts $num_prompts \
|
||||
--port 8200 \
|
||||
--save-result \
|
||||
--result-dir $results_folder \
|
||||
--result-filename disagg_prefill_tp1_overhead.json \
|
||||
--request-rate "$qps"
|
||||
kill_gpu_processes
|
||||
|
||||
}
|
||||
|
||||
@ -18,6 +18,8 @@ kill_gpu_processes() {
|
||||
# kill all processes on GPU.
|
||||
pgrep pt_main_thread | xargs -r kill -9
|
||||
pgrep python3 | xargs -r kill -9
|
||||
# vLLM now names the process with VLLM prefix after https://github.com/vllm-project/vllm/pull/21445
|
||||
pgrep VLLM | xargs -r kill -9
|
||||
for port in 8000 8100 8200; do lsof -t -i:$port | xargs -r kill -9; done
|
||||
sleep 1
|
||||
}
|
||||
@ -58,7 +60,7 @@ launch_chunked_prefill() {
|
||||
|
||||
|
||||
launch_disagg_prefill() {
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
model="meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
# disagg prefill
|
||||
CUDA_VISIBLE_DEVICES=0 python3 \
|
||||
-m vllm.entrypoints.openai.api_server \
|
||||
@ -97,20 +99,20 @@ benchmark() {
|
||||
output_len=$2
|
||||
tag=$3
|
||||
|
||||
python3 ../benchmark_serving.py \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--sonnet-input-len $input_len \
|
||||
--sonnet-output-len "$output_len" \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--num-prompts $num_prompts \
|
||||
--port 8000 \
|
||||
--save-result \
|
||||
--result-dir $results_folder \
|
||||
--result-filename "$tag"-qps-"$qps".json \
|
||||
--request-rate "$qps"
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model $model \
|
||||
--dataset-name $dataset_name \
|
||||
--dataset-path $dataset_path \
|
||||
--sonnet-input-len $input_len \
|
||||
--sonnet-output-len "$output_len" \
|
||||
--sonnet-prefix-len $prefix_len \
|
||||
--num-prompts $num_prompts \
|
||||
--port 8000 \
|
||||
--save-result \
|
||||
--result-dir $results_folder \
|
||||
--result-filename "$tag"-qps-"$qps".json \
|
||||
--request-rate "$qps"
|
||||
|
||||
sleep 2
|
||||
}
|
||||
|
||||
98
benchmarks/kernels/bench_per_token_quant_fp8.py
Normal file
98
benchmarks/kernels/bench_per_token_quant_fp8.py
Normal file
@ -0,0 +1,98 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import itertools
|
||||
from typing import Callable
|
||||
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.config import CompilationConfig, VllmConfig, set_current_vllm_config
|
||||
from vllm.model_executor.layers.quantization.input_quant_fp8 import QuantFP8
|
||||
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
|
||||
# TODO(luka): use standalone_compile utility
|
||||
def with_dyn_arg(fn: Callable, arg_index: int, dim_index: int):
|
||||
def inner(*args):
|
||||
torch._dynamo.mark_dynamic(args[arg_index], dim_index)
|
||||
return fn(*args)
|
||||
|
||||
return inner
|
||||
|
||||
|
||||
torch._dynamo.config.recompile_limit = 8888
|
||||
compilation_config = CompilationConfig(custom_ops=["none"])
|
||||
with set_current_vllm_config(VllmConfig(compilation_config=compilation_config)):
|
||||
torch_per_token_quant_fp8 = torch.compile(
|
||||
QuantFP8(False, GroupShape.PER_TOKEN),
|
||||
fullgraph=True,
|
||||
dynamic=False, # recompile for different shapes
|
||||
)
|
||||
|
||||
# First dim is explicitly dynamic to simulate vLLM usage
|
||||
torch_per_token_quant_fp8 = with_dyn_arg(torch_per_token_quant_fp8, 0, 0)
|
||||
|
||||
|
||||
def cuda_per_token_quant_fp8(
|
||||
input: torch.Tensor,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
return ops.scaled_fp8_quant(input)
|
||||
|
||||
|
||||
def calculate_diff(batch_size: int, seq_len: int):
|
||||
"""Calculate difference between Triton and CUDA implementations."""
|
||||
device = torch.device("cuda")
|
||||
x = torch.rand((batch_size * seq_len, 4096), dtype=torch.float16, device=device)
|
||||
|
||||
torch_out, torch_scale = torch_per_token_quant_fp8(x)
|
||||
cuda_out, cuda_scale = cuda_per_token_quant_fp8(x)
|
||||
|
||||
if torch.allclose(
|
||||
cuda_out.to(torch.float32), torch_out.to(torch.float32), rtol=1e-3, atol=1e-5
|
||||
) and torch.allclose(cuda_scale, torch_scale, rtol=1e-3, atol=1e-5):
|
||||
print("✅ All implementations match")
|
||||
else:
|
||||
print("❌ Implementations differ")
|
||||
|
||||
|
||||
batch_size_range = [1, 16, 32, 64, 128]
|
||||
seq_len_range = [1, 16, 64, 128, 256, 512, 1024, 2048, 4096]
|
||||
|
||||
configs = list(itertools.product(batch_size_range, seq_len_range))
|
||||
|
||||
|
||||
@triton.testing.perf_report(
|
||||
triton.testing.Benchmark(
|
||||
x_names=["batch_size", "seq_len"],
|
||||
x_vals=configs,
|
||||
line_arg="provider",
|
||||
line_vals=["torch", "cuda"],
|
||||
line_names=["Torch", "CUDA"],
|
||||
styles=[("blue", "-"), ("green", "-")],
|
||||
ylabel="us",
|
||||
plot_name="per-token-dynamic-quant-fp8-performance",
|
||||
args={},
|
||||
)
|
||||
)
|
||||
def benchmark_quantization(batch_size, seq_len, provider):
|
||||
dtype = torch.float16
|
||||
device = torch.device("cuda")
|
||||
|
||||
x = torch.randn(batch_size * seq_len, 4096, device=device, dtype=dtype)
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
|
||||
if provider == "torch":
|
||||
fn = lambda: torch_per_token_quant_fp8(x.clone())
|
||||
elif provider == "cuda":
|
||||
fn = lambda: cuda_per_token_quant_fp8(x.clone())
|
||||
|
||||
ms, min_ms, max_ms = triton.testing.do_bench_cudagraph(fn, quantiles=quantiles)
|
||||
|
||||
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
calculate_diff(batch_size=4, seq_len=4096)
|
||||
benchmark_quantization.run(print_data=True)
|
||||
@ -86,6 +86,9 @@ def benchmark_config(
|
||||
(num_experts, 2 * shard_intermediate_size), dtype=torch.float32
|
||||
)
|
||||
w2_scale = torch.randn((hidden_size, num_experts), dtype=torch.float32)
|
||||
if use_deep_gemm:
|
||||
# we use the default block shape for deepgemm
|
||||
block_quant_shape = [128, 128]
|
||||
if use_fp8_w8a8:
|
||||
if block_quant_shape:
|
||||
block_n, block_k = block_quant_shape[0], block_quant_shape[1]
|
||||
@ -573,7 +576,11 @@ def main(args: argparse.Namespace):
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.intermediate_size
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
elif config.architectures[0] in ("DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"):
|
||||
elif config.architectures[0] in (
|
||||
"DeepseekV3ForCausalLM",
|
||||
"DeepseekV2ForCausalLM",
|
||||
"Glm4MoeForCausalLM",
|
||||
):
|
||||
E = config.n_routed_experts
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.moe_intermediate_size
|
||||
@ -583,6 +590,11 @@ def main(args: argparse.Namespace):
|
||||
topk = config.num_experts_per_tok
|
||||
intermediate_size = config.moe_intermediate_size
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
elif config.architectures[0] in ("HunYuanMoEV1ForCausalLM"):
|
||||
E = config.num_experts
|
||||
topk = config.moe_topk[0]
|
||||
intermediate_size = config.moe_intermediate_size[0]
|
||||
shard_intermediate_size = 2 * intermediate_size // args.tp_size
|
||||
else:
|
||||
# Support for llama4
|
||||
config = config.get_text_config()
|
||||
|
||||
@ -5,9 +5,8 @@ import itertools
|
||||
|
||||
import torch
|
||||
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.fused_moe.moe_align_block_size import (
|
||||
moe_align_block_size_triton,
|
||||
moe_align_block_size,
|
||||
)
|
||||
from vllm.triton_utils import triton
|
||||
|
||||
@ -21,62 +20,6 @@ def get_topk_ids(num_tokens: int, num_experts: int, topk: int) -> torch.Tensor:
|
||||
)
|
||||
|
||||
|
||||
def check_correctness(num_tokens, num_experts=256, block_size=256, topk=8):
|
||||
"""
|
||||
Verifies vllm vs. Triton
|
||||
"""
|
||||
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
|
||||
|
||||
# 1. malloc space for triton and vllm
|
||||
# malloc enough space (max_num_tokens_padded) for the sorted ids
|
||||
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
|
||||
sorted_ids_triton = torch.empty(
|
||||
(max_num_tokens_padded,), dtype=torch.int32, device="cuda"
|
||||
)
|
||||
sorted_ids_triton.fill_(topk_ids.numel()) # fill with sentinel value
|
||||
expert_ids_triton = torch.zeros(
|
||||
(max_num_tokens_padded // block_size,), dtype=torch.int32, device="cuda"
|
||||
)
|
||||
num_tokens_post_pad_triton = torch.empty((1,), dtype=torch.int32, device="cuda")
|
||||
|
||||
sorted_ids_vllm = torch.empty_like(sorted_ids_triton)
|
||||
sorted_ids_vllm.fill_(topk_ids.numel())
|
||||
expert_ids_vllm = torch.zeros_like(expert_ids_triton)
|
||||
num_tokens_post_pad_vllm = torch.empty_like(num_tokens_post_pad_triton)
|
||||
|
||||
# 2. run implementations
|
||||
moe_align_block_size_triton(
|
||||
topk_ids,
|
||||
num_experts,
|
||||
block_size,
|
||||
sorted_ids_triton,
|
||||
expert_ids_triton,
|
||||
num_tokens_post_pad_triton,
|
||||
)
|
||||
|
||||
ops.moe_align_block_size(
|
||||
topk_ids,
|
||||
num_experts,
|
||||
block_size,
|
||||
sorted_ids_vllm,
|
||||
expert_ids_vllm,
|
||||
num_tokens_post_pad_vllm,
|
||||
)
|
||||
print(f"✅ VLLM implementation works with {num_experts} experts!")
|
||||
|
||||
# 3. compare results
|
||||
if torch.allclose(expert_ids_triton, expert_ids_vllm) and torch.allclose(
|
||||
num_tokens_post_pad_triton, num_tokens_post_pad_vllm
|
||||
):
|
||||
print("✅ Triton and VLLM implementations match.")
|
||||
else:
|
||||
print("❌ Triton and VLLM implementations DO NOT match.")
|
||||
print("Triton expert_ids:", expert_ids_triton)
|
||||
print("VLLM expert_ids:", expert_ids_vllm)
|
||||
print("Triton num_tokens_post_pad:", num_tokens_post_pad_triton)
|
||||
print("VLLM num_tokens_post_pad:", num_tokens_post_pad_vllm)
|
||||
|
||||
|
||||
# test configurations
|
||||
num_tokens_range = [1, 16, 256, 4096]
|
||||
num_experts_range = [16, 64, 224, 256, 280, 512]
|
||||
@ -89,8 +32,8 @@ configs = list(itertools.product(num_tokens_range, num_experts_range, topk_range
|
||||
x_names=["num_tokens", "num_experts", "topk"],
|
||||
x_vals=configs,
|
||||
line_arg="provider",
|
||||
line_vals=["vllm", "triton"], # "triton"
|
||||
line_names=["VLLM", "Triton"], # "Triton"
|
||||
line_vals=["vllm"],
|
||||
line_names=["vLLM"],
|
||||
plot_name="moe-align-block-size-performance",
|
||||
args={},
|
||||
)
|
||||
@ -100,37 +43,11 @@ def benchmark(num_tokens, num_experts, topk, provider):
|
||||
block_size = 256
|
||||
topk_ids = get_topk_ids(num_tokens, num_experts, topk)
|
||||
|
||||
max_num_tokens_padded = topk_ids.numel() + num_experts * (block_size - 1)
|
||||
sorted_ids = torch.empty((max_num_tokens_padded,), dtype=torch.int32, device="cuda")
|
||||
sorted_ids.fill_(topk_ids.numel())
|
||||
max_num_m_blocks = max_num_tokens_padded // block_size
|
||||
expert_ids = torch.empty((max_num_m_blocks,), dtype=torch.int32, device="cuda")
|
||||
num_tokens_post_pad = torch.empty((1,), dtype=torch.int32, device="cuda")
|
||||
|
||||
quantiles = [0.5, 0.2, 0.8]
|
||||
|
||||
if provider == "vllm":
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(
|
||||
lambda: ops.moe_align_block_size(
|
||||
topk_ids,
|
||||
num_experts,
|
||||
block_size,
|
||||
sorted_ids.clone(),
|
||||
expert_ids.clone(),
|
||||
num_tokens_post_pad.clone(),
|
||||
),
|
||||
quantiles=quantiles,
|
||||
)
|
||||
elif provider == "triton":
|
||||
ms, min_ms, max_ms = triton.testing.do_bench(
|
||||
lambda: moe_align_block_size_triton(
|
||||
topk_ids,
|
||||
num_experts,
|
||||
block_size,
|
||||
sorted_ids.clone(),
|
||||
expert_ids.clone(),
|
||||
num_tokens_post_pad.clone(),
|
||||
),
|
||||
lambda: moe_align_block_size(topk_ids, block_size, num_experts),
|
||||
quantiles=quantiles,
|
||||
)
|
||||
|
||||
@ -154,6 +71,4 @@ if __name__ == "__main__":
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
print("Running correctness check...")
|
||||
check_correctness(num_tokens=1024, num_experts=args.num_experts, topk=args.topk)
|
||||
benchmark.run(print_data=True, show_plots=True)
|
||||
|
||||
@ -8,12 +8,13 @@ import ray
|
||||
import torch
|
||||
from transformers import AutoConfig
|
||||
|
||||
from vllm.model_executor.layers.fused_moe.deep_gemm_moe import (
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import *
|
||||
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import (
|
||||
_moe_permute,
|
||||
_moe_unpermute_and_reduce,
|
||||
moe_permute,
|
||||
moe_unpermute,
|
||||
)
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import *
|
||||
from vllm.model_executor.layers.fused_moe.moe_permute_unpermute import *
|
||||
from vllm.model_executor.layers.fused_moe.utils import _fp8_quantize
|
||||
from vllm.platforms import current_platform
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
@ -63,18 +64,19 @@ def benchmark_permute(
|
||||
|
||||
def run():
|
||||
if use_customized_permute:
|
||||
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
|
||||
moe_permute(
|
||||
qhidden_states,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
token_expert_indices=token_expert_indices,
|
||||
topk=topk,
|
||||
n_expert=num_experts,
|
||||
n_local_expert=num_experts,
|
||||
expert_map=None,
|
||||
align_block_size=align_block_size,
|
||||
)
|
||||
(
|
||||
permuted_hidden_states,
|
||||
a1q_scale,
|
||||
first_token_off,
|
||||
inv_perm_idx,
|
||||
m_indices,
|
||||
) = moe_permute(
|
||||
qhidden_states,
|
||||
a1q_scale=None,
|
||||
topk_ids=topk_ids,
|
||||
n_expert=num_experts,
|
||||
expert_map=None,
|
||||
align_block_size=align_block_size,
|
||||
)
|
||||
else:
|
||||
(
|
||||
@ -150,18 +152,19 @@ def benchmark_unpermute(
|
||||
|
||||
def prepare():
|
||||
if use_customized_permute:
|
||||
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = (
|
||||
moe_permute(
|
||||
qhidden_states,
|
||||
topk_weights=topk_weights,
|
||||
topk_ids=topk_ids,
|
||||
token_expert_indices=token_expert_indices,
|
||||
topk=topk,
|
||||
n_expert=num_experts,
|
||||
n_local_expert=num_experts,
|
||||
expert_map=None,
|
||||
align_block_size=align_block_size,
|
||||
)
|
||||
(
|
||||
permuted_hidden_states,
|
||||
a1q_scale,
|
||||
first_token_off,
|
||||
inv_perm_idx,
|
||||
m_indices,
|
||||
) = moe_permute(
|
||||
qhidden_states,
|
||||
a1q_scale=None,
|
||||
topk_ids=topk_ids,
|
||||
n_expert=num_experts,
|
||||
expert_map=None,
|
||||
align_block_size=align_block_size,
|
||||
)
|
||||
# convert to fp16/bf16 as gemm output
|
||||
return (
|
||||
@ -191,16 +194,19 @@ def benchmark_unpermute(
|
||||
|
||||
def run(input: tuple):
|
||||
if use_customized_permute:
|
||||
(permuted_hidden_states, first_token_off, inv_perm_idx, m_indices) = input
|
||||
(
|
||||
permuted_hidden_states,
|
||||
first_token_off,
|
||||
inv_perm_idx,
|
||||
m_indices,
|
||||
) = input
|
||||
output = torch.empty_like(hidden_states)
|
||||
moe_unpermute(
|
||||
output,
|
||||
permuted_hidden_states,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inv_perm_idx,
|
||||
first_token_off,
|
||||
topk,
|
||||
num_experts,
|
||||
num_experts,
|
||||
)
|
||||
else:
|
||||
(
|
||||
@ -211,7 +217,11 @@ def benchmark_unpermute(
|
||||
inv_perm,
|
||||
) = input
|
||||
_moe_unpermute_and_reduce(
|
||||
output_hidden_states, permuted_hidden_states, inv_perm, topk_weights
|
||||
output_hidden_states,
|
||||
permuted_hidden_states,
|
||||
inv_perm,
|
||||
topk_weights,
|
||||
True,
|
||||
)
|
||||
|
||||
# JIT compilation & warmup
|
||||
@ -318,6 +328,7 @@ def main(args: argparse.Namespace):
|
||||
elif (
|
||||
config.architectures[0] == "DeepseekV3ForCausalLM"
|
||||
or config.architectures[0] == "DeepseekV2ForCausalLM"
|
||||
or config.architectures[0] == "Glm4MoeForCausalLM"
|
||||
):
|
||||
E = config.n_routed_experts
|
||||
topk = config.num_experts_per_tok
|
||||
|
||||
240
benchmarks/kernels/benchmark_trtllm_attention.py
Normal file
240
benchmarks/kernels/benchmark_trtllm_attention.py
Normal file
@ -0,0 +1,240 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
|
||||
import csv
|
||||
import os
|
||||
import random
|
||||
from datetime import datetime
|
||||
|
||||
import flashinfer
|
||||
import torch
|
||||
|
||||
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
|
||||
|
||||
# KV Cache Layout for TRT-LLM
|
||||
# kv_cache_shape = (num_blocks, 2, num_kv_heads, page_size, head_dim)
|
||||
|
||||
|
||||
def to_float8(x, dtype=torch.float8_e4m3fn):
|
||||
finfo = torch.finfo(dtype)
|
||||
min_val, max_val = x.aminmax()
|
||||
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
|
||||
scale = finfo.max / amax * 0.1
|
||||
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
|
||||
return x_scl_sat.to(dtype), scale.float().reciprocal()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def benchmark_decode(
|
||||
num_seqs,
|
||||
max_seq_len,
|
||||
page_size=16,
|
||||
dtype=torch.bfloat16,
|
||||
kv_layout="HND",
|
||||
num_kv_heads=8,
|
||||
kv_cache_dtype="auto",
|
||||
head_dim=128,
|
||||
warmup=10,
|
||||
trials=20,
|
||||
):
|
||||
torch.set_default_device("cuda")
|
||||
device = "cuda"
|
||||
torch.manual_seed(0)
|
||||
|
||||
# Currently only HEAD_GRP_SIZE == 8 is supported
|
||||
HEAD_GRP_SIZE = 8
|
||||
MAX_SEQ_LEN = max_seq_len
|
||||
|
||||
# large number to reduce kv_cache reuse
|
||||
NUM_BLOCKS = int(256000 / page_size)
|
||||
|
||||
workspace_buffer = torch.empty(1024 * 1024 * 1024, dtype=torch.int8, device=device)
|
||||
|
||||
# For decode, batch_size is num_decode_token
|
||||
num_qo_heads = num_kv_heads * HEAD_GRP_SIZE
|
||||
sm_scale = float(1.0 / (head_dim**0.5))
|
||||
q = torch.randn(num_seqs, num_qo_heads, head_dim, device=device, dtype=dtype)
|
||||
kv_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
|
||||
|
||||
max_kv_len = max(kv_lens)
|
||||
kv_lens_tensor = torch.tensor(kv_lens, dtype=torch.int, device=device)
|
||||
max_num_blocks_per_seq = (max_kv_len + page_size - 1) // page_size
|
||||
|
||||
block_tables = torch.randint(
|
||||
0, NUM_BLOCKS, (num_seqs, max_num_blocks_per_seq), dtype=torch.int32
|
||||
)
|
||||
|
||||
kv_cache_shape = (NUM_BLOCKS, 2, num_kv_heads, page_size, head_dim)
|
||||
kv_cache = torch.randn(size=kv_cache_shape, device=device, dtype=dtype)
|
||||
k_scale = v_scale = 1.0
|
||||
|
||||
if kv_cache_dtype.startswith("fp8"):
|
||||
kv_cache, _ = to_float8(kv_cache)
|
||||
|
||||
# Benchmark TRT decode
|
||||
def trt_decode():
|
||||
return flashinfer.decode.trtllm_batch_decode_with_kv_cache(
|
||||
q,
|
||||
kv_cache,
|
||||
workspace_buffer,
|
||||
num_qo_heads,
|
||||
num_kv_heads,
|
||||
sm_scale,
|
||||
block_tables,
|
||||
kv_lens_tensor,
|
||||
page_size,
|
||||
max_kv_len,
|
||||
kv_cache_dtype,
|
||||
k_scale,
|
||||
v_scale,
|
||||
)
|
||||
|
||||
def time_fn(fn, warmup=10, trials=20):
|
||||
torch.cuda.synchronize()
|
||||
start = torch.cuda.Event(enable_timing=True)
|
||||
end = torch.cuda.Event(enable_timing=True)
|
||||
times = []
|
||||
for i in range(warmup):
|
||||
fn()
|
||||
for i in range(trials):
|
||||
start.record()
|
||||
fn()
|
||||
end.record()
|
||||
torch.cuda.synchronize()
|
||||
times.append(start.elapsed_time(end)) # ms
|
||||
return sum(times) / len(times), torch.std(torch.tensor(times))
|
||||
|
||||
# TRT Decode
|
||||
trt_mean, trt_std = time_fn(trt_decode)
|
||||
|
||||
kv_indptr = [0]
|
||||
kv_indices = []
|
||||
kv_last_page_lens = []
|
||||
for i in range(num_seqs):
|
||||
seq_len = kv_lens[i]
|
||||
assert seq_len > 0
|
||||
num_blocks = (seq_len + page_size - 1) // page_size
|
||||
kv_indices.extend(block_tables[i, :num_blocks])
|
||||
kv_indptr.append(kv_indptr[-1] + num_blocks)
|
||||
kv_last_page_len = seq_len % page_size
|
||||
if kv_last_page_len == 0:
|
||||
kv_last_page_len = page_size
|
||||
kv_last_page_lens.append(kv_last_page_len)
|
||||
|
||||
kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
|
||||
kv_indices = torch.tensor(kv_indices, dtype=torch.int32)
|
||||
kv_last_page_lens = torch.tensor(kv_last_page_lens, dtype=torch.int32)
|
||||
|
||||
wrapper = flashinfer.BatchDecodeWithPagedKVCacheWrapper(
|
||||
workspace_buffer,
|
||||
kv_layout,
|
||||
use_tensor_cores=((num_qo_heads // num_kv_heads) > 4),
|
||||
)
|
||||
|
||||
wrapper.plan(
|
||||
kv_indptr,
|
||||
kv_indices,
|
||||
kv_last_page_lens,
|
||||
num_qo_heads,
|
||||
num_kv_heads,
|
||||
head_dim,
|
||||
page_size,
|
||||
"NONE",
|
||||
q_data_type=dtype,
|
||||
kv_data_type=torch.float8_e4m3fn if kv_cache_dtype.startswith("fp8") else dtype,
|
||||
)
|
||||
|
||||
def baseline_decode():
|
||||
return wrapper.run(q, kv_cache, sm_scale, k_scale, v_scale)
|
||||
|
||||
baseline_mean, baseline_std = time_fn(baseline_decode)
|
||||
|
||||
# Calculate percentage speedup (positive means TRT is faster)
|
||||
speedup_percent = (baseline_mean - trt_mean) / baseline_mean
|
||||
|
||||
print(
|
||||
f"\t{num_seqs}\t{max_seq_len}\t{trt_mean:.3f}\t{trt_std.item():.3f}"
|
||||
f"\t{baseline_mean:.3f}\t{baseline_std.item():.3f}\t{speedup_percent:.3f}"
|
||||
)
|
||||
|
||||
# Return results for CSV writing
|
||||
return {
|
||||
"num_seqs": num_seqs,
|
||||
"trt_mean": trt_mean,
|
||||
"trt_std": trt_std.item(),
|
||||
"baseline_mean": baseline_mean,
|
||||
"baseline_std": baseline_std.item(),
|
||||
"speedup_percent": speedup_percent,
|
||||
"q_dtype": str(dtype),
|
||||
"kv_cache_dtype": kv_cache_dtype,
|
||||
"page_size": page_size,
|
||||
"num_kv_heads": num_kv_heads,
|
||||
"head_dim": head_dim,
|
||||
"max_seq_len": max_seq_len,
|
||||
}
|
||||
|
||||
|
||||
def write_results_to_csv(results, filename=None):
|
||||
"""Write benchmark results to CSV file."""
|
||||
if filename is None:
|
||||
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
filename = f"flashinfer_trtllm_benchmark_{timestamp}.csv"
|
||||
|
||||
fieldnames = [
|
||||
"num_seqs",
|
||||
"trt_mean",
|
||||
"trt_std",
|
||||
"baseline_mean",
|
||||
"baseline_std",
|
||||
"speedup_percent",
|
||||
"q_dtype",
|
||||
"kv_cache_dtype",
|
||||
"page_size",
|
||||
"num_kv_heads",
|
||||
"head_dim",
|
||||
"max_seq_len",
|
||||
]
|
||||
|
||||
file_exists = os.path.exists(filename)
|
||||
|
||||
with open(filename, "a", newline="") as csvfile:
|
||||
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
||||
|
||||
if not file_exists:
|
||||
writer.writeheader()
|
||||
|
||||
for result in results:
|
||||
writer.writerow(result)
|
||||
|
||||
print(f"Results written to {filename}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
num_seqs = [1, 4, 8, 16, 32, 64, 128, 256]
|
||||
max_seq_lens = [1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072]
|
||||
all_results = []
|
||||
|
||||
print("Running benchmark for kv_cache_dtype: bfloat16")
|
||||
print(
|
||||
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\tbaseline_std\tspeedup_percent"
|
||||
)
|
||||
for max_seq_len in max_seq_lens:
|
||||
for bs in num_seqs:
|
||||
result = benchmark_decode(
|
||||
bs, max_seq_len, dtype=torch.bfloat16, kv_cache_dtype="auto"
|
||||
)
|
||||
all_results.append(result)
|
||||
|
||||
print("Running benchmark for q_dtype = bfloat16, kv_cache_dtype: fp8")
|
||||
print(
|
||||
"\tnum_seqs\tmax_seq_len\ttrt_mean\ttrt_std\tbaseline_mean\tbaseline_std\tspeedup_percent"
|
||||
)
|
||||
for max_seq_len in max_seq_lens:
|
||||
for bs in num_seqs:
|
||||
result = benchmark_decode(
|
||||
bs, max_seq_len, dtype=torch.bfloat16, kv_cache_dtype="fp8"
|
||||
)
|
||||
all_results.append(result)
|
||||
|
||||
# Write all results to CSV
|
||||
write_results_to_csv(all_results)
|
||||
108
benchmarks/kv_cache/benchmark_block_pool.py
Normal file
108
benchmarks/kv_cache/benchmark_block_pool.py
Normal file
@ -0,0 +1,108 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
||||
import gc
|
||||
import time
|
||||
from typing import Optional
|
||||
|
||||
from tabulate import tabulate
|
||||
|
||||
from vllm.utils import FlexibleArgumentParser
|
||||
from vllm.v1.core.block_pool import BlockPool
|
||||
|
||||
|
||||
class Metric:
|
||||
def __init__(self) -> None:
|
||||
self.cnt: int = 0
|
||||
self.sum_v: int = 0
|
||||
self.max_v: Optional[int] = None
|
||||
|
||||
def update(self, v: int) -> None:
|
||||
self.cnt += 1
|
||||
self.sum_v += v
|
||||
if self.max_v is None:
|
||||
self.max_v = v
|
||||
else:
|
||||
self.max_v = max(self.max_v, v)
|
||||
|
||||
def avg_v(self) -> float:
|
||||
return self.sum_v * 1.0 / self.cnt
|
||||
|
||||
|
||||
def main(args):
|
||||
rows = []
|
||||
for allocate_block in args.allocate_blocks:
|
||||
# Enforce a GC collect ahead to minimize the impact among runs
|
||||
gc.collect()
|
||||
block_pool = BlockPool(num_gpu_blocks=args.num_gpu_blocks, enable_caching=True)
|
||||
|
||||
get_blocks_metric: Metric = Metric()
|
||||
free_blocks_metric: Metric = Metric()
|
||||
for _ in range(args.num_iteration):
|
||||
t1 = time.monotonic_ns()
|
||||
blocks = block_pool.get_new_blocks(allocate_block)
|
||||
t2 = time.monotonic_ns()
|
||||
block_pool.free_blocks(blocks)
|
||||
t3 = time.monotonic_ns()
|
||||
get_blocks_metric.update(t2 - t1)
|
||||
free_blocks_metric.update(t3 - t2)
|
||||
|
||||
if get_blocks_metric.max_v is not None and free_blocks_metric.max_v is not None:
|
||||
rows.append(
|
||||
[
|
||||
get_blocks_metric.cnt,
|
||||
args.num_gpu_blocks,
|
||||
allocate_block,
|
||||
get_blocks_metric.avg_v() / 1000000,
|
||||
get_blocks_metric.max_v / 1000000.0,
|
||||
free_blocks_metric.avg_v() / 1000000,
|
||||
free_blocks_metric.max_v / 1000000.0,
|
||||
]
|
||||
)
|
||||
else:
|
||||
print(
|
||||
"No valid metrics found."
|
||||
f" {get_blocks_metric.max_v=} {free_blocks_metric.max_v=}"
|
||||
)
|
||||
|
||||
print(
|
||||
tabulate(
|
||||
rows,
|
||||
headers=[
|
||||
"Iterations",
|
||||
"Total\nBlocks",
|
||||
"Allocated\nBlocks",
|
||||
"Get Blocks\nAvg (ms)",
|
||||
"Get Blocks\nMax (ms)",
|
||||
"Free Blocks\nAvg (ms)",
|
||||
"Free Blocks\nMax (ms)",
|
||||
],
|
||||
tablefmt="grid",
|
||||
floatfmt=".6f",
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def invoke_main() -> None:
|
||||
parser = FlexibleArgumentParser(
|
||||
description="Benchmark the performance of BlockPool for KV Cache."
|
||||
)
|
||||
parser.add_argument("--num-gpu-blocks", type=int, default=100000)
|
||||
parser.add_argument(
|
||||
"--num-iteration",
|
||||
type=int,
|
||||
default=1000,
|
||||
help="Number of iterations to run to stablize final data readings",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--allocate-blocks",
|
||||
type=int,
|
||||
nargs="*",
|
||||
default=[10, 50, 100, 500, 1000],
|
||||
help="Number of blocks to allocate",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
main(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
invoke_main() # pragma: no cover
|
||||
@ -58,6 +58,22 @@ function (find_isa CPUINFO TARGET OUT)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
|
||||
function(check_sysctl TARGET OUT)
|
||||
execute_process(COMMAND sysctl -n "${TARGET}"
|
||||
RESULT_VARIABLE SYSCTL_RET
|
||||
OUTPUT_VARIABLE SYSCTL_INFO
|
||||
ERROR_QUIET
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||
if(SYSCTL_RET EQUAL 0 AND
|
||||
(SYSCTL_INFO STREQUAL "1" OR SYSCTL_INFO GREATER 0))
|
||||
set(${OUT} ON PARENT_SCOPE)
|
||||
else()
|
||||
set(${OUT} OFF PARENT_SCOPE)
|
||||
endif()
|
||||
endfunction()
|
||||
|
||||
|
||||
function (is_avx512_disabled OUT)
|
||||
set(DISABLE_AVX512 $ENV{VLLM_CPU_DISABLE_AVX512})
|
||||
if(DISABLE_AVX512 AND DISABLE_AVX512 STREQUAL "true")
|
||||
@ -70,7 +86,10 @@ endfunction()
|
||||
is_avx512_disabled(AVX512_DISABLED)
|
||||
|
||||
if (MACOSX_FOUND AND CMAKE_SYSTEM_PROCESSOR STREQUAL "arm64")
|
||||
set(APPLE_SILICON_FOUND TRUE)
|
||||
message(STATUS "Apple Silicon Detected")
|
||||
set(ENABLE_NUMA OFF)
|
||||
check_sysctl(hw.optional.neon ASIMD_FOUND)
|
||||
check_sysctl(hw.optional.arm.FEAT_BF16 ARM_BF16_FOUND)
|
||||
else()
|
||||
find_isa(${CPUINFO} "avx2" AVX2_FOUND)
|
||||
find_isa(${CPUINFO} "avx512f" AVX512_FOUND)
|
||||
@ -82,7 +101,6 @@ else()
|
||||
find_isa(${CPUINFO} "S390" S390_FOUND)
|
||||
endif()
|
||||
|
||||
|
||||
if (AVX512_FOUND AND NOT AVX512_DISABLED)
|
||||
list(APPEND CXX_COMPILE_FLAGS
|
||||
"-mavx512f"
|
||||
@ -149,9 +167,6 @@ elseif (ASIMD_FOUND)
|
||||
set(MARCH_FLAGS "-march=armv8.2-a+dotprod+fp16")
|
||||
endif()
|
||||
list(APPEND CXX_COMPILE_FLAGS ${MARCH_FLAGS})
|
||||
elseif(APPLE_SILICON_FOUND)
|
||||
message(STATUS "Apple Silicon Detected")
|
||||
set(ENABLE_NUMA OFF)
|
||||
elseif (S390_FOUND)
|
||||
message(STATUS "S390 detected")
|
||||
# Check for S390 VXE support
|
||||
|
||||
@ -24,6 +24,7 @@
|
||||
|
||||
#include "attention_dtypes.h"
|
||||
#include "attention_utils.cuh"
|
||||
#include "../cuda_compat.h"
|
||||
|
||||
#ifdef USE_ROCM
|
||||
#include <hip/hip_bf16.h>
|
||||
@ -33,12 +34,6 @@ typedef __hip_bfloat16 __nv_bfloat16;
|
||||
#include "../quantization/fp8/nvidia/quant_utils.cuh"
|
||||
#endif
|
||||
|
||||
#ifndef USE_ROCM
|
||||
#define WARP_SIZE 32
|
||||
#else
|
||||
#define WARP_SIZE warpSize
|
||||
#endif
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
|
||||
@ -670,7 +665,6 @@ __global__ void paged_attention_v2_reduce_kernel(
|
||||
|
||||
} // namespace vllm
|
||||
|
||||
#undef WARP_SIZE
|
||||
#undef MAX
|
||||
#undef MIN
|
||||
#undef DIVIDE_ROUND_UP
|
||||
|
||||
372
csrc/attention/mla/cutlass_sm100_mla/device/sm100_mla.hpp
Normal file
372
csrc/attention/mla/cutlass_sm100_mla/device/sm100_mla.hpp
Normal file
@ -0,0 +1,372 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
*this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. Neither the name of the copyright holder nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from
|
||||
* this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
*POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*
|
||||
* Taken from SGLANG PR https://github.com/sgl-project/sglang/pull/6929
|
||||
* by Alcanderian JieXin Liang
|
||||
*/
|
||||
|
||||
/*!
|
||||
\file
|
||||
\brief An universal device layer for cutlass 3.x-style kernels.
|
||||
*/
|
||||
|
||||
// clang-format off
|
||||
#pragma once
|
||||
|
||||
// common
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/device_kernel.h"
|
||||
|
||||
#if !defined(__CUDACC_RTC__)
|
||||
#include "cutlass/cluster_launch.hpp"
|
||||
#include "cutlass/trace.h"
|
||||
#endif // !defined(__CUDACC_RTC__)
|
||||
|
||||
#include "../kernel/sm100_fmha_mla_tma_warpspecialized.hpp"
|
||||
#include "../kernel/sm100_fmha_mla_reduction.hpp"
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace cutlass::fmha::device {
|
||||
|
||||
using namespace cute;
|
||||
using namespace cutlass::fmha::kernel;
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
////////////////////////////// CUTLASS 3.x API /////////////////////////////////
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template<
|
||||
class Kernel_
|
||||
>
|
||||
class MLA {
|
||||
public:
|
||||
|
||||
using Kernel = Kernel_;
|
||||
|
||||
using ReductionKernel = cutlass::fmha::kernel::Sm100FmhaMlaReductionKernel<
|
||||
typename Kernel::ElementOut,
|
||||
typename Kernel::ElementAcc,
|
||||
typename Kernel::ElementAcc,
|
||||
Kernel::TileShapeH::value,
|
||||
Kernel::TileShapeL::value,
|
||||
256 /*Max split*/
|
||||
>;
|
||||
|
||||
/// Argument structure: User API
|
||||
using KernelArguments = typename Kernel::Arguments;
|
||||
using ReductionArguments = typename ReductionKernel::Arguments;
|
||||
|
||||
using Arguments = KernelArguments;
|
||||
|
||||
/// Argument structure: Kernel API
|
||||
using KernelParams = typename Kernel::Params;
|
||||
using ReductionParams = typename ReductionKernel::Params;
|
||||
struct Params {
|
||||
KernelParams fmha_params;
|
||||
ReductionParams reduction_params;
|
||||
};
|
||||
|
||||
private:
|
||||
|
||||
/// Kernel API parameters object
|
||||
Params params_;
|
||||
|
||||
bool is_initialized(bool set = false) {
|
||||
static bool initialized = false;
|
||||
if (set) initialized = true;
|
||||
return initialized;
|
||||
}
|
||||
|
||||
static ReductionArguments to_reduction_args(Arguments const& args) {
|
||||
auto [H, K, D, B] = args.problem_shape;
|
||||
return ReductionArguments{
|
||||
nullptr, args.epilogue.ptr_o, nullptr, args.epilogue.ptr_lse,
|
||||
args.mainloop.softmax_scale, B, args.split_kv, K, args.mainloop.ptr_seq,
|
||||
args.ptr_split_kv, Kernel::TileShapeS::value
|
||||
};
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// Access the Params structure
|
||||
Params const& params() const {
|
||||
return params_;
|
||||
}
|
||||
|
||||
static void set_split_kv (KernelArguments& args) {
|
||||
// printf("set_split_kv start");
|
||||
if (args.split_kv >= 1) return;
|
||||
auto [H, K, D, B] = args.problem_shape;
|
||||
// std::cout << H << " " << K << " " << D << " " << B << "\n";
|
||||
int sm_count = args.hw_info.sm_count;
|
||||
// printf(" sm_count = %d\n", sm_count);
|
||||
int max_splits = ceil_div(K, 128);
|
||||
max_splits = min(16, max_splits);
|
||||
// printf(" max_splits = %d\n", max_splits);
|
||||
int sms_per_batch = max(1, sm_count / B);
|
||||
// printf(" sms_per_batch = %d\n", sms_per_batch);
|
||||
int split_heur = min(max_splits, sms_per_batch);
|
||||
int waves = ceil_div(B * split_heur, sm_count);
|
||||
int k_waves = ceil_div(max_splits, split_heur);
|
||||
int split_wave_aware = ceil_div(max_splits, k_waves);
|
||||
args.split_kv = split_wave_aware;
|
||||
// printf(" args.split_kv = %d\n", args.split_kv);
|
||||
|
||||
}
|
||||
|
||||
/// Determines whether the GEMM can execute the given problem.
|
||||
static Status
|
||||
can_implement(Arguments const& args) {
|
||||
if (! Kernel::can_implement(args)) {
|
||||
return Status::kInvalid;
|
||||
}
|
||||
if (! ReductionKernel::can_implement(to_reduction_args(args))) {
|
||||
return Status::kInvalid;
|
||||
}
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Gets the workspace size
|
||||
static size_t
|
||||
get_workspace_size(Arguments const& args) {
|
||||
size_t workspace_bytes = 0;
|
||||
workspace_bytes += Kernel::get_workspace_size(args);
|
||||
workspace_bytes += ReductionKernel::get_workspace_size(to_reduction_args(args));
|
||||
return workspace_bytes;
|
||||
}
|
||||
|
||||
/// Computes the maximum number of active blocks per multiprocessor
|
||||
static int maximum_active_blocks(int /* smem_capacity */ = -1) {
|
||||
CUTLASS_TRACE_HOST("MLA::maximum_active_blocks()");
|
||||
int max_active_blocks = -1;
|
||||
int smem_size = Kernel::SharedStorageSize;
|
||||
|
||||
// first, account for dynamic smem capacity if needed
|
||||
cudaError_t result;
|
||||
if (smem_size >= (48 << 10)) {
|
||||
CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size);
|
||||
result = cudaFuncSetAttribute(
|
||||
device_kernel<Kernel>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize,
|
||||
smem_size);
|
||||
if (cudaSuccess != result) {
|
||||
result = cudaGetLastError(); // to clear the error bit
|
||||
CUTLASS_TRACE_HOST(
|
||||
" cudaFuncSetAttribute() returned error: "
|
||||
<< cudaGetErrorString(result));
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// query occupancy after setting smem size
|
||||
result = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
|
||||
&max_active_blocks,
|
||||
device_kernel<Kernel>,
|
||||
Kernel::MaxThreadsPerBlock,
|
||||
smem_size);
|
||||
|
||||
if (cudaSuccess != result) {
|
||||
result = cudaGetLastError(); // to clear the error bit
|
||||
CUTLASS_TRACE_HOST(
|
||||
" cudaOccupancyMaxActiveBlocksPerMultiprocessor() returned error: "
|
||||
<< cudaGetErrorString(result));
|
||||
return -1;
|
||||
}
|
||||
|
||||
CUTLASS_TRACE_HOST(" max_active_blocks: " << max_active_blocks);
|
||||
return max_active_blocks;
|
||||
}
|
||||
|
||||
/// Initializes GEMM state from arguments.
|
||||
Status
|
||||
initialize(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
|
||||
CUTLASS_TRACE_HOST("MLA::initialize() - workspace "
|
||||
<< workspace << ", stream: " << (stream ? "non-null" : "null"));
|
||||
|
||||
// Initialize the workspace
|
||||
Status status = Kernel::initialize_workspace(args, workspace, stream);
|
||||
if (status != Status::kSuccess) {
|
||||
return status;
|
||||
}
|
||||
status = ReductionKernel::initialize_workspace(to_reduction_args(args), workspace, stream);
|
||||
if (status != Status::kSuccess) {
|
||||
return status;
|
||||
}
|
||||
KernelParams kernel_params = Kernel::to_underlying_arguments(args, workspace);
|
||||
|
||||
ReductionArguments reduction_args = to_reduction_args(args);
|
||||
if (reduction_args.split_kv > 1) {
|
||||
reduction_args.ptr_oaccum = kernel_params.epilogue.ptr_o_acc;
|
||||
reduction_args.ptr_lseaccum = kernel_params.epilogue.ptr_lse_acc;
|
||||
}
|
||||
ReductionParams reduction_params = ReductionKernel::to_underlying_arguments(reduction_args, workspace);
|
||||
// Initialize the Params structure
|
||||
params_ = Params {kernel_params, reduction_params};
|
||||
|
||||
if (is_initialized()) return Status::kSuccess;
|
||||
|
||||
// account for dynamic smem capacity if needed
|
||||
// no dynamic smem is needed for reduction kernel
|
||||
int smem_size = Kernel::SharedStorageSize;
|
||||
if (smem_size >= (48 << 10)) {
|
||||
CUTLASS_TRACE_HOST(" Setting smem size to " << smem_size);
|
||||
cudaError_t result = cudaFuncSetAttribute(
|
||||
device_kernel<Kernel>,
|
||||
cudaFuncAttributeMaxDynamicSharedMemorySize,
|
||||
smem_size);
|
||||
if (cudaSuccess != result) {
|
||||
result = cudaGetLastError(); // to clear the error bit
|
||||
CUTLASS_TRACE_HOST(" cudaFuncSetAttribute() returned error: " << cudaGetErrorString(result));
|
||||
return Status::kErrorInternal;
|
||||
}
|
||||
}
|
||||
|
||||
is_initialized(true);
|
||||
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Update API is preserved in 3.0, but does not guarantee a lightweight update of params.
|
||||
Status
|
||||
update(Arguments const& args, void* workspace = nullptr) {
|
||||
CUTLASS_TRACE_HOST("MLA()::update() - workspace: " << workspace);
|
||||
|
||||
size_t workspace_bytes = get_workspace_size(args);
|
||||
if (workspace_bytes > 0 && nullptr == workspace) {
|
||||
return Status::kErrorWorkspaceNull;
|
||||
}
|
||||
|
||||
auto fmha_params = Kernel::to_underlying_arguments(args, workspace);
|
||||
|
||||
ReductionArguments reduction_args = to_reduction_args(args);
|
||||
if (reduction_args.split_kv > 1) {
|
||||
reduction_args.ptr_oaccum = fmha_params.epilogue.ptr_o_acc;
|
||||
reduction_args.ptr_lseaccum = fmha_params.epilogue.ptr_lse_acc;
|
||||
}
|
||||
ReductionParams reduction_params = ReductionKernel::to_underlying_arguments(reduction_args, workspace);
|
||||
// Initialize the Params structure
|
||||
params_ = Params {fmha_params, reduction_params};
|
||||
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
/// Primary run() entry point API that is static allowing users to create and manage their own params.
|
||||
/// Supplied params struct must be construct by calling Kernel::to_underling_arguments()
|
||||
static Status
|
||||
run(Params& params, cudaStream_t stream = nullptr) {
|
||||
CUTLASS_TRACE_HOST("MLA::run()");
|
||||
dim3 const block = Kernel::get_block_shape();
|
||||
dim3 const grid = Kernel::get_grid_shape(params.fmha_params);
|
||||
|
||||
// configure smem size and carveout
|
||||
int smem_size = Kernel::SharedStorageSize;
|
||||
|
||||
Status launch_result;
|
||||
// Use extended launch API only for mainloops that use it
|
||||
if constexpr(Kernel::ArchTag::kMinComputeCapability >= 90) {
|
||||
dim3 cluster(cute::size<0>(typename Kernel::ClusterShape{}),
|
||||
cute::size<1>(typename Kernel::ClusterShape{}),
|
||||
cute::size<2>(typename Kernel::ClusterShape{}));
|
||||
void const* kernel = (void const*) device_kernel<Kernel>;
|
||||
void* kernel_params[] = {¶ms.fmha_params};
|
||||
launch_result = ClusterLauncher::launch(grid, cluster, block, smem_size, stream, kernel, kernel_params);
|
||||
}
|
||||
else {
|
||||
launch_result = Status::kSuccess;
|
||||
device_kernel<Kernel><<<grid, block, smem_size, stream>>>(params.fmha_params);
|
||||
}
|
||||
|
||||
cudaError_t result = cudaGetLastError();
|
||||
if (cudaSuccess != result or Status::kSuccess != launch_result) {
|
||||
//return Status::kSuccess;
|
||||
CUTLASS_TRACE_HOST(" Kernel launch failed. Reason: " << result);
|
||||
return Status::kErrorInternal;
|
||||
}
|
||||
if (params.reduction_params.split_kv > 1) {
|
||||
// launch reduction kernel
|
||||
dim3 const block = ReductionKernel::get_block_shape();
|
||||
dim3 const grid = ReductionKernel::get_grid_shape(params.reduction_params);
|
||||
device_kernel<ReductionKernel><<<grid, block, 0, stream>>>(params.reduction_params);
|
||||
cudaError_t result = cudaGetLastError();
|
||||
if (cudaSuccess == result) {
|
||||
return Status::kSuccess;
|
||||
}
|
||||
else {
|
||||
CUTLASS_TRACE_HOST(" Kernel launch failed. Reason: " << result);
|
||||
return Status::kErrorInternal;
|
||||
}
|
||||
}
|
||||
else {
|
||||
return Status::kSuccess;
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
// Non-static launch overloads that first create and set the internal params struct of this kernel handle.
|
||||
//
|
||||
|
||||
/// Launches the kernel after first constructing Params internal state from supplied arguments.
|
||||
Status
|
||||
run(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
|
||||
Status status = initialize(args, workspace, stream);
|
||||
if (Status::kSuccess == status) {
|
||||
status = run(params_, stream);
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
/// Launches the kernel after first constructing Params internal state from supplied arguments.
|
||||
Status
|
||||
operator()(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) {
|
||||
return run(args, workspace, stream);
|
||||
}
|
||||
|
||||
/// Overload that allows a user to re-launch the same kernel without updating internal params struct.
|
||||
Status
|
||||
run(cudaStream_t stream = nullptr) {
|
||||
return run(params_, stream);
|
||||
}
|
||||
|
||||
/// Overload that allows a user to re-launch the same kernel without updating internal params struct.
|
||||
Status
|
||||
operator()(cudaStream_t stream = nullptr) {
|
||||
return run(params_, stream);
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace cutlass::fmha::device
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
@ -0,0 +1,203 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2024 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights
|
||||
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
*this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. Neither the name of the copyright holder nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from
|
||||
* this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
*POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*
|
||||
* Taken from SGLANG PR https://github.com/sgl-project/sglang/pull/6929
|
||||
* by Alcanderian JieXin Liang
|
||||
*/
|
||||
|
||||
// clang-format off
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/arch/arch.h"
|
||||
#include "cute/tensor.hpp"
|
||||
|
||||
namespace cutlass::fmha::kernel {
|
||||
|
||||
using namespace cute;
|
||||
template<
|
||||
class ElementOut,
|
||||
class ElementAcc,
|
||||
class ElementScale,
|
||||
size_t kNumHeads,
|
||||
size_t kHeadDimLatent,
|
||||
int kMaxSplits
|
||||
>
|
||||
struct Sm100FmhaMlaReductionKernel {
|
||||
|
||||
static const int SharedStorageSize = 0;
|
||||
static const int MaxThreadsPerBlock = 128;
|
||||
static const int MinBlocksPerMultiprocessor = 1;
|
||||
|
||||
using ArchTag = cutlass::arch::Sm100;
|
||||
|
||||
static_assert(kHeadDimLatent % MaxThreadsPerBlock == 0);
|
||||
struct Arguments {
|
||||
ElementAcc* ptr_oaccum = nullptr;
|
||||
ElementOut* ptr_o = nullptr;
|
||||
ElementAcc* ptr_lseaccum = nullptr;
|
||||
ElementAcc* ptr_lse = nullptr;
|
||||
ElementScale scale = 1.f;
|
||||
int num_batches = 0;
|
||||
int split_kv = -1;
|
||||
int dim_k = -1;
|
||||
int* ptr_seq = nullptr;
|
||||
int* ptr_split_kv = nullptr;
|
||||
int tile_shape_s = 128;
|
||||
};
|
||||
using Params = Arguments;
|
||||
|
||||
static Params to_underlying_arguments(Arguments const& args, void* workspace) {
|
||||
return {args.ptr_oaccum, args.ptr_o, args.ptr_lseaccum, args.ptr_lse,
|
||||
args.scale, args.num_batches, args.split_kv, args.dim_k, args.ptr_seq,
|
||||
args.ptr_split_kv, args.tile_shape_s};
|
||||
}
|
||||
|
||||
static size_t get_workspace_size(Arguments const& /*args*/) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
static Status initialize_workspace(
|
||||
Arguments const& /*args*/, void* /*ws*/, cudaStream_t /*stream*/) {
|
||||
return Status::kSuccess;
|
||||
}
|
||||
|
||||
static dim3 get_grid_shape(Params const& params) {
|
||||
return dim3(kNumHeads, 1, params.num_batches);
|
||||
}
|
||||
|
||||
static dim3 get_block_shape() {
|
||||
return dim3(MaxThreadsPerBlock, 1, 1);
|
||||
}
|
||||
|
||||
static bool can_implement(Arguments const& args) {
|
||||
if (args.num_batches <= 0) return false;
|
||||
if (args.split_kv <= 0) return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE void operator() (Params const& params, char* smem_raw) {
|
||||
if (params.split_kv <= 1) return;
|
||||
auto blk_coord = make_coord(blockIdx.x, _0{}, blockIdx.z);
|
||||
|
||||
__shared__ ElementAcc sLseScale[kMaxSplits];
|
||||
const size_t offset_lseaccum = get<0>(blk_coord) + kNumHeads * params.split_kv * get<2>(blk_coord);
|
||||
const size_t offset_lse = get<0>(blk_coord) + kNumHeads * get<2>(blk_coord);
|
||||
|
||||
Tensor gLSEaccum = make_tensor(make_gmem_ptr(params.ptr_lseaccum + offset_lseaccum),
|
||||
make_shape(params.split_kv), Stride<Int<kNumHeads>>{});
|
||||
|
||||
Tensor gLSE = make_tensor(make_gmem_ptr(params.ptr_lse + offset_lse),
|
||||
Shape<_1>{}, Stride<_1>{});
|
||||
|
||||
auto dim_k = params.ptr_seq == nullptr ? params.dim_k : params.ptr_seq[get<2>(blk_coord)];
|
||||
auto local_split_kv = params.ptr_split_kv == nullptr ? params.split_kv : params.ptr_split_kv[get<2>(blk_coord)];
|
||||
auto k_tile_total = ceil_div(dim_k, params.tile_shape_s);
|
||||
auto k_tile_per_cta = ceil_div(k_tile_total, local_split_kv);
|
||||
local_split_kv = ceil_div(k_tile_total, k_tile_per_cta);
|
||||
|
||||
int warp_idx = cutlass::canonical_warp_idx_sync();
|
||||
if (warp_idx == 0) {
|
||||
constexpr int kNLsePerThread = cute::ceil_div(kMaxSplits, 32);
|
||||
|
||||
ElementAcc local_lse[kNLsePerThread];
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < kNLsePerThread; ++i) {
|
||||
const int split = i * 32 + threadIdx.x;
|
||||
local_lse[i] = split < local_split_kv ? gLSEaccum(split) : -std::numeric_limits<ElementAcc>::infinity();
|
||||
}
|
||||
|
||||
ElementAcc lse_max = -std::numeric_limits<ElementAcc>::infinity();
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < kNLsePerThread; ++i) {
|
||||
lse_max = max(lse_max, local_lse[i]);
|
||||
}
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int offset = 16; offset >= 1; offset /= 2) {
|
||||
lse_max = max(lse_max, __shfl_xor_sync(0xffffffff, lse_max, offset));
|
||||
}
|
||||
lse_max = lse_max == -std::numeric_limits<ElementAcc>::infinity() ? 0.0f : lse_max; // In case all local LSEs are -inf
|
||||
lse_max = __shfl_sync(0xffffffff, lse_max, 0);
|
||||
|
||||
ElementAcc sum_lse = 0;
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < kNLsePerThread; ++i) {
|
||||
sum_lse = sum_lse + expf(local_lse[i] - lse_max);
|
||||
}
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int offset = 16; offset >= 1; offset /= 2) {
|
||||
sum_lse = sum_lse + __shfl_xor_sync(0xffffffff, sum_lse, offset);
|
||||
}
|
||||
|
||||
sum_lse = __shfl_sync(0xffffffff, sum_lse, 0);
|
||||
|
||||
ElementAcc global_lse = (sum_lse == 0.f || sum_lse != sum_lse) ? std::numeric_limits<ElementAcc>::infinity() : logf(sum_lse) + lse_max;
|
||||
if (threadIdx.x == 0 and params.ptr_lse != nullptr) {
|
||||
gLSE(0) = global_lse;
|
||||
}
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for (int i = 0; i < kNLsePerThread; ++i) {
|
||||
const int split = i * 32 + threadIdx.x;
|
||||
if (split < local_split_kv) {
|
||||
sLseScale[split] = expf(local_lse[i] - global_lse);
|
||||
}
|
||||
}
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
constexpr int Elements = kHeadDimLatent / MaxThreadsPerBlock;
|
||||
const size_t offset_oaccum = kHeadDimLatent * params.split_kv * (get<0>(blk_coord) + kNumHeads * get<2>(blk_coord));
|
||||
Tensor gOaccum = make_tensor(make_gmem_ptr(params.ptr_oaccum + offset_oaccum),
|
||||
Shape<Int<kHeadDimLatent>>{}, Stride<_1>{});
|
||||
ElementAcc local_val[Elements] = {0};
|
||||
for (int split = 0; split < local_split_kv; ++split) {
|
||||
ElementAcc lse_scale = sLseScale[split];
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for(int i = 0; i < Elements; ++i) {
|
||||
local_val[i] += lse_scale * gOaccum(threadIdx.x + MaxThreadsPerBlock * i);
|
||||
}
|
||||
gOaccum.data() = gOaccum.data() + kHeadDimLatent;
|
||||
}
|
||||
auto ptr_o_local = params.ptr_o + (get<0>(blk_coord) + get<2>(blk_coord) * kNumHeads) * kHeadDimLatent;
|
||||
Tensor gO = make_tensor(make_gmem_ptr(ptr_o_local), Shape<Int<kHeadDimLatent>>{}, Stride<_1>{});
|
||||
|
||||
CUTLASS_PRAGMA_UNROLL
|
||||
for(int i = 0; i < Elements; ++i) {
|
||||
gO(threadIdx.x + MaxThreadsPerBlock * i) = static_cast<ElementOut>(local_val[i]);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cutlass::fmha::kernel
|
||||
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,165 @@
|
||||
/***************************************************************************************************
|
||||
* Copyright (c) 2024 - 2025 NVIDIA CORPORATION & AFFILIATES. All rights
|
||||
*reserved. SPDX-License-Identifier: BSD-3-Clause
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice,
|
||||
*this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3. Neither the name of the copyright holder nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from
|
||||
* this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
*ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
*LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
*CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
*SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
*INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
*CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
*ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
*POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
**************************************************************************************************/
|
||||
/*
|
||||
* Taken from SGLANG PR https://github.com/sgl-project/sglang/pull/6929
|
||||
* by Alcanderian JieXin Liang
|
||||
*/
|
||||
|
||||
// clang-format off
|
||||
#pragma once
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "cutlass/fast_math.h"
|
||||
#include "cutlass/kernel_hardware_info.h"
|
||||
|
||||
namespace cutlass::fmha::kernel {
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct Sm100MlaIndividualTileScheduler {
|
||||
|
||||
struct Params {
|
||||
dim3 grid;
|
||||
};
|
||||
|
||||
bool valid_ = true;
|
||||
|
||||
CUTLASS_DEVICE
|
||||
Sm100MlaIndividualTileScheduler(Params const&) {}
|
||||
|
||||
template<class ProblemShape, class ClusterShape>
|
||||
static Params to_underlying_arguments(
|
||||
ProblemShape const& problem_shape, KernelHardwareInfo hw_info,
|
||||
ClusterShape const& cluster_shape, int const& split_kv) {
|
||||
using namespace cute;
|
||||
dim3 grid(get<0>(cluster_shape), get<3>(problem_shape) /* Batch */, split_kv /*Maximum Split KV*/);
|
||||
return Params{ grid };
|
||||
}
|
||||
|
||||
static dim3 get_grid_shape(Params const& params) {
|
||||
return params.grid;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
bool is_valid() {
|
||||
return valid_;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
auto get_block_coord() {
|
||||
using namespace cute;
|
||||
return make_coord(blockIdx.x, _0{}, blockIdx.y, blockIdx.z);
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
Sm100MlaIndividualTileScheduler& operator++() {
|
||||
valid_ = false;
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
struct Sm100MlaPersistentTileScheduler {
|
||||
|
||||
struct Params {
|
||||
int num_blocks;
|
||||
FastDivmod divmod_m_block;
|
||||
FastDivmod divmod_b;
|
||||
FastDivmod divmod_split_kv;
|
||||
KernelHardwareInfo hw_info;
|
||||
};
|
||||
|
||||
int block_idx = 0;
|
||||
Params params;
|
||||
|
||||
CUTLASS_DEVICE
|
||||
Sm100MlaPersistentTileScheduler(Params const& params) : block_idx(blockIdx.x), params(params) {}
|
||||
|
||||
template<class ProblemShape, class ClusterShape>
|
||||
static Params to_underlying_arguments(
|
||||
ProblemShape const& problem_shape, KernelHardwareInfo hw_info,
|
||||
ClusterShape const& cluster_shape, int const& split_kv) {
|
||||
using namespace cute;
|
||||
// Get SM count if needed, otherwise use user supplied SM count
|
||||
int sm_count = hw_info.sm_count;
|
||||
if (sm_count <= 1 || sm_count % size<0>(cluster_shape) != 0) {
|
||||
CUTLASS_TRACE_HOST(" WARNING: Arguments do not include a valid SM count.\n"
|
||||
" For optimal performance, populate the arguments KernelHardwareInfo struct with the SM count.");
|
||||
sm_count = KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
|
||||
}
|
||||
|
||||
CUTLASS_TRACE_HOST("to_underlying_arguments(): Setting persistent grid SM count to " << sm_count);
|
||||
hw_info.sm_count = sm_count;
|
||||
|
||||
int num_m_blocks = size<0>(cluster_shape);
|
||||
int num_blocks = num_m_blocks * get<3>(problem_shape) /* Batch */;
|
||||
num_blocks *= split_kv; /* Maximum Split KV*/
|
||||
|
||||
return Params {
|
||||
num_blocks,
|
||||
{ num_m_blocks}, { get<3>(problem_shape) }, {split_kv},
|
||||
hw_info
|
||||
};
|
||||
}
|
||||
|
||||
static dim3 get_grid_shape(Params const& params) {
|
||||
dim3 grid(std::min(params.num_blocks, params.hw_info.sm_count), 1, 1);
|
||||
return grid;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
bool is_valid() {
|
||||
return block_idx < params.num_blocks;
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
auto get_block_coord() {
|
||||
using namespace cute;
|
||||
int block_decode = block_idx;
|
||||
int m_block, bidb, n_split_kv;
|
||||
params.divmod_m_block(block_decode, m_block, block_decode);
|
||||
params.divmod_b(block_decode, bidb, block_decode);
|
||||
params.divmod_split_kv(block_decode, n_split_kv, block_decode);
|
||||
return make_coord(m_block, _0{}, bidb, n_split_kv);
|
||||
}
|
||||
|
||||
CUTLASS_DEVICE
|
||||
Sm100MlaPersistentTileScheduler& operator++() {
|
||||
block_idx += gridDim.x;
|
||||
return *this;
|
||||
}
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // namespace cutlass::fmha::kernel
|
||||
283
csrc/attention/mla/sm100_cutlass_mla_kernel.cu
Normal file
283
csrc/attention/mla/sm100_cutlass_mla_kernel.cu
Normal file
@ -0,0 +1,283 @@
|
||||
/*
|
||||
Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
||||
Copyright 2025 SGLang Team. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
/*
|
||||
* Taken from SGLANG PR https://github.com/sgl-project/sglang/pull/6929
|
||||
* by Alcanderian JieXin Liang
|
||||
*/
|
||||
#include "core/registration.h"
|
||||
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <cutlass/cutlass.h>
|
||||
#include <cutlass/kernel_hardware_info.h>
|
||||
#include <torch/all.h>
|
||||
|
||||
#include <cute/tensor.hpp>
|
||||
#include <iostream>
|
||||
|
||||
#include "cutlass_sm100_mla/device/sm100_mla.hpp"
|
||||
#include "cutlass_sm100_mla/kernel/sm100_mla_tile_scheduler.hpp"
|
||||
|
||||
// clang-format off
|
||||
#if !defined(CUDA_VERSION) || CUDA_VERSION < 12040
|
||||
void sm100_cutlass_mla_decode(
|
||||
torch::Tensor const& out,
|
||||
torch::Tensor const& q_nope,
|
||||
torch::Tensor const& q_pe,
|
||||
torch::Tensor const& kv_c_and_k_pe_cache,
|
||||
torch::Tensor const& seq_lens,
|
||||
torch::Tensor const& page_table,
|
||||
torch::Tensor const& workspace,
|
||||
int64_t num_kv_splits) {
|
||||
TORCH_CHECK(false, "CUDA version must be >= 12.4 for cutlass_mla_decode");
|
||||
}
|
||||
int64_t sm100_cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_batches, int64_t sm_count, int64_t num_kv_splits) {
|
||||
TORCH_CHECK(false, "CUDA version must be >= 12.4 for cutlass_mla_get_workspace_size");
|
||||
}
|
||||
#else
|
||||
|
||||
#define CUTLASS_CHECK(status) \
|
||||
{ \
|
||||
cutlass::Status error = status; \
|
||||
TORCH_CHECK(error == cutlass::Status::kSuccess, cutlassGetStatusString(error)); \
|
||||
}
|
||||
|
||||
using namespace cute;
|
||||
using namespace cutlass::fmha::kernel;
|
||||
|
||||
template <bool v>
|
||||
struct IsPersistent {
|
||||
static const bool value = v;
|
||||
};
|
||||
|
||||
template <typename T, bool IsPaged128, typename PersistenceOption = IsPersistent<true>>
|
||||
struct MlaSm100 {
|
||||
using Element = T;
|
||||
using ElementAcc = float;
|
||||
using ElementOut = T;
|
||||
|
||||
using TileShape = Shape<_128, _128, Shape<_512, _64>>;
|
||||
using TileShapeH = cute::tuple_element_t<0, TileShape>;
|
||||
using TileShapeD = cute::tuple_element_t<2, TileShape>;
|
||||
|
||||
// H K (D_latent D_rope) B
|
||||
using ProblemShape = cute::tuple<TileShapeH, int, TileShapeD, int>;
|
||||
|
||||
using StrideQ = cute::tuple<int64_t, _1, int64_t>; // H D B
|
||||
using StrideK = cute::tuple<int64_t, _1, int64_t>; // K D B
|
||||
using StrideO = StrideK; // H D B
|
||||
using StrideLSE = cute::tuple<_1, int>; // H B
|
||||
|
||||
using TileScheduler =
|
||||
std::conditional_t<PersistenceOption::value, Sm100MlaPersistentTileScheduler, Sm100MlaIndividualTileScheduler>;
|
||||
|
||||
using FmhaKernel = cutlass::fmha::kernel::Sm100FmhaMlaKernelTmaWarpspecialized<
|
||||
TileShape,
|
||||
Element,
|
||||
ElementAcc,
|
||||
ElementOut,
|
||||
ElementAcc,
|
||||
TileScheduler,
|
||||
/*kIsCpAsync=*/!IsPaged128>;
|
||||
using Fmha = cutlass::fmha::device::MLA<FmhaKernel>;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
typename T::Fmha::Arguments args_from_options(
|
||||
at::Tensor const& out,
|
||||
at::Tensor const& q_nope,
|
||||
at::Tensor const& q_pe,
|
||||
at::Tensor const& kv_c_and_k_pe_cache,
|
||||
at::Tensor const& seq_lens,
|
||||
at::Tensor const& page_table,
|
||||
double sm_scale,
|
||||
int64_t num_kv_splits) {
|
||||
cutlass::KernelHardwareInfo hw_info;
|
||||
hw_info.device_id = q_nope.device().index();
|
||||
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);
|
||||
|
||||
int batches = q_nope.sizes()[0];
|
||||
int page_count_per_seq = page_table.sizes()[1];
|
||||
int page_count_total = kv_c_and_k_pe_cache.sizes()[0];
|
||||
int page_size = kv_c_and_k_pe_cache.sizes()[1];
|
||||
int max_seq_len = page_size * page_count_per_seq;
|
||||
using TileShapeH = typename T::TileShapeH;
|
||||
using TileShapeD = typename T::TileShapeD;
|
||||
auto problem_shape = cute::make_tuple(TileShapeH{}, max_seq_len, TileShapeD{}, batches);
|
||||
|
||||
auto [H, K, D, B] = problem_shape;
|
||||
auto [D_latent, D_rope] = D;
|
||||
|
||||
float scale = float(sm_scale);
|
||||
|
||||
using StrideQ = typename T::StrideQ;
|
||||
using StrideK = typename T::StrideK;
|
||||
using StrideO = typename T::StrideO;
|
||||
using StrideLSE = typename T::StrideLSE;
|
||||
|
||||
StrideQ stride_Q_nope = cute::make_tuple(
|
||||
static_cast<int64_t>(q_nope.stride(1)), _1{}, static_cast<int64_t>(q_nope.stride(0)));
|
||||
StrideQ stride_Q_pe = cute::make_tuple(
|
||||
static_cast<int64_t>(q_pe.stride(1)), _1{}, static_cast<int64_t>(q_pe.stride(0)));
|
||||
|
||||
StrideK stride_C = cute::make_tuple(
|
||||
static_cast<int64_t>(0 + D_latent + D_rope), _1{}, static_cast<int64_t>(page_size * (D_latent + D_rope)));
|
||||
StrideLSE stride_PT = cute::make_stride(_1{}, page_count_per_seq);
|
||||
StrideLSE stride_LSE = cute::make_tuple(_1{}, 0 + H);
|
||||
StrideO stride_O = cute::make_tuple(static_cast<int64_t>(0 + D_latent), _1{}, static_cast<int64_t>(0 + H * D_latent));
|
||||
|
||||
using Element = typename T::Element;
|
||||
using ElementOut = typename T::ElementOut;
|
||||
using ElementAcc = typename T::ElementAcc;
|
||||
auto Q_nope_ptr = static_cast<Element*>(q_nope.data_ptr());
|
||||
auto Q_pe_ptr = static_cast<Element*>(q_pe.data_ptr());
|
||||
auto C_ptr = static_cast<Element*>(kv_c_and_k_pe_cache.data_ptr());
|
||||
typename T::Fmha::Arguments arguments{
|
||||
problem_shape,
|
||||
{scale,
|
||||
Q_nope_ptr,
|
||||
stride_Q_nope,
|
||||
Q_pe_ptr,
|
||||
stride_Q_pe,
|
||||
C_ptr,
|
||||
stride_C,
|
||||
C_ptr + D_latent,
|
||||
stride_C,
|
||||
static_cast<int*>(seq_lens.data_ptr()),
|
||||
static_cast<int*>(page_table.data_ptr()),
|
||||
stride_PT,
|
||||
page_count_total,
|
||||
page_size},
|
||||
{static_cast<ElementOut*>(out.data_ptr()), stride_O, static_cast<ElementAcc*>(nullptr), stride_LSE},
|
||||
hw_info,
|
||||
// TODO(trevor-m): Change split_kv back to -1 when
|
||||
// https://github.com/NVIDIA/cutlass/issues/2274 is fixed. Split_kv=1 will
|
||||
// perform worse with larger context length and smaller batch sizes.
|
||||
num_kv_splits, // split_kv
|
||||
nullptr, // is_var_split_kv
|
||||
};
|
||||
// TODO(kaixih@nvidia): When split_kv=-1 and is_var_split_kv=false, we compute
|
||||
// split_kv automatically based on batch size and sequence length to balance
|
||||
// workload across available SMs. Consider using var_split_kv for manual
|
||||
// control if needed.
|
||||
T::Fmha::set_split_kv(arguments);
|
||||
return arguments;
|
||||
}
|
||||
|
||||
template <typename Element, bool IsPaged128, typename PersistenceOption>
|
||||
void runMla(
|
||||
at::Tensor const& out,
|
||||
at::Tensor const& q_nope,
|
||||
at::Tensor const& q_pe,
|
||||
at::Tensor const& kv_c_and_k_pe_cache,
|
||||
at::Tensor const& seq_lens,
|
||||
at::Tensor const& page_table,
|
||||
at::Tensor const& workspace,
|
||||
double sm_scale,
|
||||
int64_t num_kv_splits,
|
||||
cudaStream_t stream) {
|
||||
using MlaSm100Type = MlaSm100<Element, IsPaged128, PersistenceOption>;
|
||||
typename MlaSm100Type::Fmha fmha;
|
||||
auto arguments = args_from_options<MlaSm100Type>(out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, sm_scale, num_kv_splits);
|
||||
|
||||
CUTLASS_CHECK(fmha.can_implement(arguments));
|
||||
|
||||
CUTLASS_CHECK(fmha.initialize(arguments, workspace.data_ptr(), stream));
|
||||
|
||||
CUTLASS_CHECK(fmha.run(arguments, workspace.data_ptr(), stream));
|
||||
}
|
||||
|
||||
#define DISPATCH_BOOL(expr, const_expr, ...) \
|
||||
[&]() -> bool { \
|
||||
if (expr) { \
|
||||
constexpr bool const_expr = true; \
|
||||
return __VA_ARGS__(); \
|
||||
} else { \
|
||||
constexpr bool const_expr = false; \
|
||||
return __VA_ARGS__(); \
|
||||
} \
|
||||
}()
|
||||
|
||||
void sm100_cutlass_mla_decode(
|
||||
torch::Tensor const& out,
|
||||
torch::Tensor const& q_nope,
|
||||
torch::Tensor const& q_pe,
|
||||
torch::Tensor const& kv_c_and_k_pe_cache,
|
||||
torch::Tensor const& seq_lens,
|
||||
torch::Tensor const& page_table,
|
||||
torch::Tensor const& workspace,
|
||||
double sm_scale,
|
||||
int64_t num_kv_splits) {
|
||||
auto in_dtype = q_nope.dtype();
|
||||
at::cuda::CUDAGuard device_guard{(char)q_nope.get_device()};
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(q_nope.get_device());
|
||||
const int page_size = kv_c_and_k_pe_cache.sizes()[1];
|
||||
|
||||
// NOTE(alcanderian): IsPersistent has bug with manual split_kv.
|
||||
// Kernel will hang if batch is too large with large num_kv_splits. (for example bs=8, num_kv_splits=8)
|
||||
// Maybe per batch split kv will fix this.
|
||||
DISPATCH_BOOL(page_size == 128, IsPaged128, [&] {
|
||||
DISPATCH_BOOL(num_kv_splits <= 1, NotManualSplitKV, [&] {
|
||||
if (in_dtype == at::ScalarType::Half) {
|
||||
runMla<cutlass::half_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
|
||||
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
|
||||
} else if (in_dtype == at::ScalarType::BFloat16) {
|
||||
runMla<cutlass::bfloat16_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
|
||||
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
|
||||
} else if (in_dtype == at::ScalarType::Float8_e4m3fn) {
|
||||
runMla<cutlass::float_e4m3_t, IsPaged128, IsPersistent<NotManualSplitKV>>(
|
||||
out, q_nope, q_pe, kv_c_and_k_pe_cache, seq_lens, page_table, workspace, sm_scale, num_kv_splits, stream);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported input data type of MLA");
|
||||
}
|
||||
return true;
|
||||
});
|
||||
return true;
|
||||
});
|
||||
}
|
||||
|
||||
int64_t sm100_cutlass_mla_get_workspace_size(int64_t max_seq_len, int64_t num_batches, int64_t sm_count, int64_t num_kv_splits) {
|
||||
// Workspace size depends on ElementAcc and ElementLSE (same as ElementAcc)
|
||||
// which are float, so Element type here doesn't matter.
|
||||
using MlaSm100Type = MlaSm100<cutlass::half_t, true>;
|
||||
|
||||
// Get split kv. Requires problem shape and sm_count only.
|
||||
typename MlaSm100Type::Fmha::Arguments arguments;
|
||||
using TileShapeH = typename MlaSm100Type::TileShapeH;
|
||||
using TileShapeD = typename MlaSm100Type::TileShapeD;
|
||||
arguments.problem_shape =
|
||||
cute::make_tuple(TileShapeH{}, static_cast<int>(max_seq_len), TileShapeD{}, static_cast<int>(num_batches));
|
||||
// Assumes device 0 when getting sm_count.
|
||||
arguments.hw_info.sm_count =
|
||||
sm_count <= 0 ? cutlass::KernelHardwareInfo::query_device_multiprocessor_count(/*device_id=*/0) : sm_count;
|
||||
arguments.split_kv = num_kv_splits;
|
||||
MlaSm100Type::Fmha::set_split_kv(arguments);
|
||||
|
||||
return MlaSm100Type::Fmha::get_workspace_size(arguments);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CUDA, m) {
|
||||
m.impl("sm100_cutlass_mla_decode", &sm100_cutlass_mla_decode);
|
||||
}
|
||||
|
||||
TORCH_LIBRARY_IMPL_EXPAND(TORCH_EXTENSION_NAME, CatchAll, m) {
|
||||
m.impl("sm100_cutlass_mla_get_workspace_size", &sm100_cutlass_mla_get_workspace_size);
|
||||
}
|
||||
|
||||
// clang-format on
|
||||
@ -16,14 +16,8 @@
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "attention_kernels.cuh"
|
||||
|
||||
#ifndef USE_ROCM
|
||||
#define WARP_SIZE 32
|
||||
#else
|
||||
#define WARP_SIZE warpSize
|
||||
#endif
|
||||
#include "../cuda_compat.h"
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
@ -80,7 +74,7 @@ void paged_attention_v1_launcher(
|
||||
const float* k_scale_ptr = reinterpret_cast<const float*>(k_scale.data_ptr());
|
||||
const float* v_scale_ptr = reinterpret_cast<const float*>(v_scale.data_ptr());
|
||||
|
||||
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
const int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
int padded_max_seq_len =
|
||||
DIVIDE_ROUND_UP(max_seq_len, BLOCK_SIZE) * BLOCK_SIZE;
|
||||
int logits_size = padded_max_seq_len * sizeof(float);
|
||||
@ -187,7 +181,6 @@ void paged_attention_v1(
|
||||
CALL_V1_LAUNCHER_BLOCK_SIZE)
|
||||
}
|
||||
|
||||
#undef WARP_SIZE
|
||||
#undef MAX
|
||||
#undef MIN
|
||||
#undef DIVIDE_ROUND_UP
|
||||
|
||||
@ -16,14 +16,8 @@
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "attention_kernels.cuh"
|
||||
|
||||
#ifndef USE_ROCM
|
||||
#define WARP_SIZE 32
|
||||
#else
|
||||
#define WARP_SIZE warpSize
|
||||
#endif
|
||||
#include "../cuda_compat.h"
|
||||
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||
@ -84,7 +78,7 @@ void paged_attention_v2_launcher(
|
||||
const float* k_scale_ptr = reinterpret_cast<const float*>(k_scale.data_ptr());
|
||||
const float* v_scale_ptr = reinterpret_cast<const float*>(v_scale.data_ptr());
|
||||
|
||||
constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
const int NUM_WARPS = NUM_THREADS / WARP_SIZE;
|
||||
int max_num_partitions = DIVIDE_ROUND_UP(max_seq_len, PARTITION_SIZE);
|
||||
int logits_size = PARTITION_SIZE * sizeof(float);
|
||||
int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
|
||||
@ -197,7 +191,6 @@ void paged_attention_v2(
|
||||
CALL_V2_LAUNCHER_BLOCK_SIZE)
|
||||
}
|
||||
|
||||
#undef WARP_SIZE
|
||||
#undef MAX
|
||||
#undef MIN
|
||||
#undef DIVIDE_ROUND_UP
|
||||
|
||||
@ -58,7 +58,7 @@ namespace {
|
||||
|
||||
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
||||
#define CHECK_LAST_DIM_CONTIGUOUS(x) \
|
||||
TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimention")
|
||||
TORCH_CHECK(x.strides()[x.strides().size() - 1] == 1, #x "must be contiguous at last dimension")
|
||||
|
||||
#define CHECK_INPUT(x) \
|
||||
CHECK_CPU(x); \
|
||||
|
||||
@ -126,7 +126,7 @@ void fused_experts_int4_w4a16_kernel_impl(
|
||||
int64_t topk,
|
||||
int64_t num_tokens_post_pad);
|
||||
|
||||
// shared expert implememntation for int8 w8a8
|
||||
// shared expert implementation for int8 w8a8
|
||||
template <typename scalar_t>
|
||||
void shared_expert_int8_kernel_impl(
|
||||
scalar_t* __restrict__ output,
|
||||
|
||||
@ -41,7 +41,7 @@ struct tinygemm_kernel_nn<at::BFloat16, has_bias, BLOCK_M, BLOCK_N> {
|
||||
__m512 vd0;
|
||||
__m512 vd1[COLS];
|
||||
|
||||
// oops! 4x4 spills but luckly we use 4x2
|
||||
// oops! 4x4 spills but luckily we use 4x2
|
||||
__m512 vbias[COLS];
|
||||
|
||||
// [NOTE]: s8s8 igemm compensation in avx512-vnni
|
||||
|
||||
@ -37,7 +37,7 @@ inline Vectorized<at::BFloat16> convert_from_float_ext<at::BFloat16>(const Vecto
|
||||
#define CVT_FP16_TO_FP32(a) \
|
||||
_mm512_cvtps_ph(a, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC))
|
||||
|
||||
// this doesn't hanel NaN.
|
||||
// this doesn't handle NaN.
|
||||
inline __m512bh cvt_e4m3_bf16_intrinsic_no_nan(__m256i fp8_vec) {
|
||||
const __m512i x = _mm512_cvtepu8_epi16(fp8_vec);
|
||||
|
||||
|
||||
@ -7,7 +7,7 @@
|
||||
|
||||
namespace {
|
||||
#define MAX_SHM_RANK_NUM 8
|
||||
#define PER_THREAD_SHM_BUFFER_BYTES (2 * 1024 * 1024)
|
||||
#define PER_THREAD_SHM_BUFFER_BYTES (4 * 1024 * 1024)
|
||||
static_assert(PER_THREAD_SHM_BUFFER_BYTES % 2 == 0);
|
||||
#define PER_THREAD_SHM_BUFFER_OFFSET (PER_THREAD_SHM_BUFFER_BYTES >> 1)
|
||||
#define MIN_THREAD_PROCESS_SIZE (256)
|
||||
@ -34,9 +34,10 @@ struct KernelVecType<c10::Half> {
|
||||
};
|
||||
|
||||
struct ThreadSHMContext {
|
||||
volatile char _curr_thread_stamp;
|
||||
volatile char _ready_thread_stamp;
|
||||
char _padding1[6];
|
||||
volatile char _curr_thread_stamp[2];
|
||||
volatile char _ready_thread_stamp[2];
|
||||
int local_stamp_buffer_idx;
|
||||
int remote_stamp_buffer_idx;
|
||||
int thread_id;
|
||||
int thread_num;
|
||||
int rank;
|
||||
@ -45,23 +46,28 @@ struct ThreadSHMContext {
|
||||
int swizzled_ranks[MAX_SHM_RANK_NUM];
|
||||
void* thread_shm_ptrs[MAX_SHM_RANK_NUM];
|
||||
ThreadSHMContext* shm_contexts[MAX_SHM_RANK_NUM];
|
||||
size_t _thread_buffer_mask;
|
||||
char _padding2[56];
|
||||
size_t _thread_buffer_mask[2];
|
||||
char _padding2[40];
|
||||
|
||||
ThreadSHMContext(const int thread_id, const int thread_num, const int rank,
|
||||
const int group_size, void* thread_shm_ptr)
|
||||
: _curr_thread_stamp(1),
|
||||
_ready_thread_stamp(0),
|
||||
: local_stamp_buffer_idx(0),
|
||||
remote_stamp_buffer_idx(0),
|
||||
thread_id(thread_id),
|
||||
thread_num(thread_num),
|
||||
rank(rank),
|
||||
group_size(group_size),
|
||||
_spinning_count(0),
|
||||
_thread_buffer_mask(0) {
|
||||
_spinning_count(0) {
|
||||
static_assert(sizeof(ThreadSHMContext) % 64 == 0);
|
||||
TORCH_CHECK(group_size <= MAX_SHM_RANK_NUM);
|
||||
TORCH_CHECK((size_t)this % 64 == 0);
|
||||
TORCH_CHECK((size_t)thread_shm_ptr % 64 == 0);
|
||||
_curr_thread_stamp[0] = 1;
|
||||
_curr_thread_stamp[1] = 1;
|
||||
_ready_thread_stamp[0] = 0;
|
||||
_ready_thread_stamp[1] = 0;
|
||||
_thread_buffer_mask[0] = 0;
|
||||
_thread_buffer_mask[1] = 0;
|
||||
for (int i = 0; i < MAX_SHM_RANK_NUM; ++i) {
|
||||
shm_contexts[i] = nullptr;
|
||||
thread_shm_ptrs[i] = nullptr;
|
||||
@ -70,6 +76,11 @@ struct ThreadSHMContext {
|
||||
set_context(rank, this, thread_shm_ptr);
|
||||
}
|
||||
|
||||
void set_stamp_buffer_idx(int local, int remote) {
|
||||
local_stamp_buffer_idx = local;
|
||||
remote_stamp_buffer_idx = remote;
|
||||
}
|
||||
|
||||
void set_context(int rank, ThreadSHMContext* ptr, void* thread_shm_ptr) {
|
||||
TORCH_CHECK(rank < MAX_SHM_RANK_NUM);
|
||||
TORCH_CHECK(ptr);
|
||||
@ -84,23 +95,27 @@ struct ThreadSHMContext {
|
||||
T* get_thread_shm_ptr(int rank) {
|
||||
return reinterpret_cast<T*>(
|
||||
reinterpret_cast<int8_t*>(thread_shm_ptrs[rank]) +
|
||||
(PER_THREAD_SHM_BUFFER_OFFSET & _thread_buffer_mask));
|
||||
(PER_THREAD_SHM_BUFFER_OFFSET &
|
||||
_thread_buffer_mask[local_stamp_buffer_idx]));
|
||||
}
|
||||
|
||||
void next_buffer() { _thread_buffer_mask ^= 0xFFFFFFFFFFFFFFFF; }
|
||||
void next_buffer() {
|
||||
_thread_buffer_mask[local_stamp_buffer_idx] ^= 0xFFFFFFFFFFFFFFFF;
|
||||
}
|
||||
|
||||
char get_curr_stamp() const { return _curr_thread_stamp; }
|
||||
char get_curr_stamp(int idx) const { return _curr_thread_stamp[idx]; }
|
||||
|
||||
char get_ready_stamp() const { return _ready_thread_stamp; }
|
||||
char get_ready_stamp(int idx) const { return _ready_thread_stamp[idx]; }
|
||||
|
||||
void next_stamp() {
|
||||
_mm_mfence();
|
||||
_curr_thread_stamp += 1;
|
||||
_curr_thread_stamp[local_stamp_buffer_idx] += 1;
|
||||
}
|
||||
|
||||
void commit_ready_stamp() {
|
||||
_mm_mfence();
|
||||
_ready_thread_stamp = _curr_thread_stamp;
|
||||
_ready_thread_stamp[local_stamp_buffer_idx] =
|
||||
_curr_thread_stamp[local_stamp_buffer_idx];
|
||||
}
|
||||
|
||||
int get_swizzled_rank(int idx) { return swizzled_ranks[idx]; }
|
||||
@ -117,10 +132,11 @@ struct ThreadSHMContext {
|
||||
void wait_for_one(int rank, Cond&& cond) {
|
||||
ThreadSHMContext* rank_ctx = shm_contexts[rank];
|
||||
for (;;) {
|
||||
char local_curr_stamp = get_curr_stamp();
|
||||
char local_ready_stamp = get_ready_stamp();
|
||||
char rank_curr_stamp = rank_ctx->get_curr_stamp();
|
||||
char rank_ready_stamp = rank_ctx->get_ready_stamp();
|
||||
char local_curr_stamp = get_curr_stamp(local_stamp_buffer_idx);
|
||||
char local_ready_stamp = get_ready_stamp(local_stamp_buffer_idx);
|
||||
char rank_curr_stamp = rank_ctx->get_curr_stamp(remote_stamp_buffer_idx);
|
||||
char rank_ready_stamp =
|
||||
rank_ctx->get_ready_stamp(remote_stamp_buffer_idx);
|
||||
if (cond(local_curr_stamp, local_ready_stamp, rank_curr_stamp,
|
||||
rank_ready_stamp)) {
|
||||
break;
|
||||
@ -361,6 +377,15 @@ void shm_cc_loop(ThreadSHMContext* ctx, int64_t elem_num, F&& inner_func) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void reset_threads_stamp_buffer_idx(ThreadSHMContext* ctx, int local,
|
||||
int remote) {
|
||||
int thread_num = ctx->thread_num;
|
||||
for (int i = 0; i < thread_num; ++i) {
|
||||
ThreadSHMContext* thread_ctx = ctx + i;
|
||||
thread_ctx->set_stamp_buffer_idx(local, remote);
|
||||
}
|
||||
}
|
||||
}; // namespace shm_cc_ops
|
||||
|
||||
namespace shm_cc_ops {
|
||||
@ -632,6 +657,7 @@ void shm_send_tensor_list_impl(ThreadSHMContext* ctx, int64_t dst,
|
||||
TensorListMeta* metadata = new (metadata_tensor.data_ptr()) TensorListMeta();
|
||||
metadata->bind_tensor_list(tensor_list_with_metadata);
|
||||
|
||||
shm_cc_ops::reset_threads_stamp_buffer_idx(ctx, 0, 1);
|
||||
shm_cc_ops::shm_cc_loop<int8_t>(
|
||||
ctx, metadata->total_bytes,
|
||||
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
|
||||
@ -659,6 +685,7 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
|
||||
torch::Tensor metadata_tensor =
|
||||
torch::empty({sizeof(TensorListMeta)}, options);
|
||||
|
||||
shm_cc_ops::reset_threads_stamp_buffer_idx(ctx, 1, 0);
|
||||
ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
|
||||
shm_cc_ops::memcpy(metadata_tensor.data_ptr(),
|
||||
ctx->get_thread_shm_ptr<void>(src),
|
||||
@ -677,7 +704,7 @@ std::vector<torch::Tensor> shm_recv_tensor_list_impl(ThreadSHMContext* ctx,
|
||||
ctx, metadata.total_bytes,
|
||||
[&](ThreadSHMContext* thread_ctx, int64_t data_offset,
|
||||
int64_t data_elem_num, bool fast_mode) {
|
||||
ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
|
||||
thread_ctx->wait_for_one(src, ThreadSHMContext::check_stamp_ready);
|
||||
int64_t curr_shm_offset = 0;
|
||||
while (curr_shm_offset < data_elem_num) {
|
||||
MemPiece frag = metadata.get_data(data_offset + curr_shm_offset);
|
||||
|
||||
@ -151,7 +151,7 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.impl("rotary_embedding", torch::kCPU, &rotary_embedding);
|
||||
|
||||
// Quantization
|
||||
#if defined(__AVX512F__) || defined(__aarch64__)
|
||||
#if defined(__AVX512F__) || (defined(__aarch64__) && !defined(__APPLE__))
|
||||
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
|
||||
|
||||
// Compute int8 quantized tensor for given scaling factor.
|
||||
|
||||
@ -4,10 +4,37 @@
|
||||
#include <hip/hip_runtime.h>
|
||||
#endif
|
||||
|
||||
#ifndef USE_ROCM
|
||||
#define WARP_SIZE 32
|
||||
#ifdef USE_ROCM
|
||||
struct Utils {
|
||||
static __host__ int get_warp_size() {
|
||||
static bool is_cached = false;
|
||||
static int result;
|
||||
|
||||
if (!is_cached) {
|
||||
int device_id;
|
||||
cudaDeviceProp deviceProp;
|
||||
cudaGetDevice(&device_id);
|
||||
cudaGetDeviceProperties(&deviceProp, device_id);
|
||||
|
||||
result = deviceProp.warpSize;
|
||||
is_cached = true;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
static __device__ constexpr int get_warp_size() {
|
||||
#ifdef __GFX9__
|
||||
return 64;
|
||||
#else
|
||||
return 32;
|
||||
#endif
|
||||
}
|
||||
};
|
||||
|
||||
#define WARP_SIZE Utils::get_warp_size()
|
||||
#else
|
||||
#define WARP_SIZE warpSize
|
||||
#define WARP_SIZE 32
|
||||
#endif
|
||||
|
||||
#ifndef USE_ROCM
|
||||
|
||||
@ -15,15 +15,16 @@ namespace vllm {
|
||||
// TODO(woosuk): Further optimize this kernel.
|
||||
template <typename scalar_t>
|
||||
__global__ void rms_norm_kernel(
|
||||
scalar_t* __restrict__ out, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
scalar_t* __restrict__ out, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
const int64_t input_stride,
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float epsilon, const int num_tokens, const int hidden_size) {
|
||||
__shared__ float s_variance;
|
||||
float variance = 0.0f;
|
||||
|
||||
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||
const float x = (float)input[blockIdx.x * hidden_size + idx];
|
||||
const float x = (float)input[blockIdx.x * input_stride + idx];
|
||||
variance += x * x;
|
||||
}
|
||||
|
||||
@ -37,7 +38,7 @@ __global__ void rms_norm_kernel(
|
||||
__syncthreads();
|
||||
|
||||
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||
float x = (float)input[blockIdx.x * hidden_size + idx];
|
||||
float x = (float)input[blockIdx.x * input_stride + idx];
|
||||
out[blockIdx.x * hidden_size + idx] =
|
||||
((scalar_t)(x * s_variance)) * weight[idx];
|
||||
}
|
||||
@ -50,7 +51,8 @@ __global__ void rms_norm_kernel(
|
||||
template <typename scalar_t, int width>
|
||||
__global__ std::enable_if_t<(width > 0) && _typeConvert<scalar_t>::exists>
|
||||
fused_add_rms_norm_kernel(
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
const int64_t input_stride,
|
||||
scalar_t* __restrict__ residual, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float epsilon, const int num_tokens, const int hidden_size) {
|
||||
@ -59,6 +61,7 @@ fused_add_rms_norm_kernel(
|
||||
static_assert(sizeof(_f16Vec<scalar_t, width>) == sizeof(scalar_t) * width);
|
||||
|
||||
const int vec_hidden_size = hidden_size / width;
|
||||
const int64_t vec_input_stride = input_stride / width;
|
||||
__shared__ float s_variance;
|
||||
float variance = 0.0f;
|
||||
/* These and the argument pointers are all declared `restrict` as they are
|
||||
@ -73,7 +76,8 @@ fused_add_rms_norm_kernel(
|
||||
|
||||
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
|
||||
int id = blockIdx.x * vec_hidden_size + idx;
|
||||
_f16Vec<scalar_t, width> temp = input_v[id];
|
||||
int64_t strided_id = blockIdx.x * vec_input_stride + idx;
|
||||
_f16Vec<scalar_t, width> temp = input_v[strided_id];
|
||||
temp += residual_v[id];
|
||||
variance += temp.sum_squares();
|
||||
residual_v[id] = temp;
|
||||
@ -90,10 +94,11 @@ fused_add_rms_norm_kernel(
|
||||
|
||||
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
|
||||
int id = blockIdx.x * vec_hidden_size + idx;
|
||||
int64_t strided_id = blockIdx.x * vec_input_stride + idx;
|
||||
_f16Vec<scalar_t, width> temp = residual_v[id];
|
||||
temp *= s_variance;
|
||||
temp *= weight_v[idx];
|
||||
input_v[id] = temp;
|
||||
input_v[strided_id] = temp;
|
||||
}
|
||||
}
|
||||
|
||||
@ -103,7 +108,8 @@ fused_add_rms_norm_kernel(
|
||||
template <typename scalar_t, int width>
|
||||
__global__ std::enable_if_t<(width == 0) || !_typeConvert<scalar_t>::exists>
|
||||
fused_add_rms_norm_kernel(
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
const int64_t input_stride,
|
||||
scalar_t* __restrict__ residual, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float epsilon, const int num_tokens, const int hidden_size) {
|
||||
@ -111,7 +117,7 @@ fused_add_rms_norm_kernel(
|
||||
float variance = 0.0f;
|
||||
|
||||
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||
scalar_t z = input[blockIdx.x * hidden_size + idx];
|
||||
scalar_t z = input[blockIdx.x * input_stride + idx];
|
||||
z += residual[blockIdx.x * hidden_size + idx];
|
||||
float x = (float)z;
|
||||
variance += x * x;
|
||||
@ -129,7 +135,7 @@ fused_add_rms_norm_kernel(
|
||||
|
||||
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||
float x = (float)residual[blockIdx.x * hidden_size + idx];
|
||||
input[blockIdx.x * hidden_size + idx] =
|
||||
input[blockIdx.x * input_stride + idx] =
|
||||
((scalar_t)(x * s_variance)) * weight[idx];
|
||||
}
|
||||
}
|
||||
@ -141,11 +147,12 @@ void rms_norm(torch::Tensor& out, // [..., hidden_size]
|
||||
torch::Tensor& weight, // [hidden_size]
|
||||
double epsilon) {
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(input.stride(-1) == 1);
|
||||
TORCH_CHECK(weight.is_contiguous());
|
||||
|
||||
int hidden_size = input.size(-1);
|
||||
int num_tokens = input.numel() / hidden_size;
|
||||
int64_t input_stride = input.stride(-2);
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
dim3 block(std::min(hidden_size, 1024));
|
||||
@ -153,26 +160,29 @@ void rms_norm(torch::Tensor& out, // [..., hidden_size]
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
VLLM_DISPATCH_FLOATING_TYPES(input.scalar_type(), "rms_norm_kernel", [&] {
|
||||
vllm::rms_norm_kernel<scalar_t><<<grid, block, 0, stream>>>(
|
||||
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(),
|
||||
out.data_ptr<scalar_t>(), input.data_ptr<scalar_t>(), input_stride,
|
||||
weight.data_ptr<scalar_t>(), epsilon, num_tokens, hidden_size);
|
||||
});
|
||||
}
|
||||
|
||||
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
|
||||
VLLM_DISPATCH_FLOATING_TYPES( \
|
||||
input.scalar_type(), "fused_add_rms_norm_kernel", [&] { \
|
||||
vllm::fused_add_rms_norm_kernel<scalar_t, width> \
|
||||
<<<grid, block, 0, stream>>>(input.data_ptr<scalar_t>(), \
|
||||
residual.data_ptr<scalar_t>(), \
|
||||
weight.data_ptr<scalar_t>(), epsilon, \
|
||||
num_tokens, hidden_size); \
|
||||
#define LAUNCH_FUSED_ADD_RMS_NORM(width) \
|
||||
VLLM_DISPATCH_FLOATING_TYPES( \
|
||||
input.scalar_type(), "fused_add_rms_norm_kernel", [&] { \
|
||||
vllm::fused_add_rms_norm_kernel<scalar_t, width> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
input.data_ptr<scalar_t>(), input_stride, \
|
||||
residual.data_ptr<scalar_t>(), weight.data_ptr<scalar_t>(), \
|
||||
epsilon, num_tokens, hidden_size); \
|
||||
});
|
||||
|
||||
void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
|
||||
torch::Tensor& residual, // [..., hidden_size]
|
||||
torch::Tensor& weight, // [hidden_size]
|
||||
double epsilon) {
|
||||
TORCH_CHECK(residual.is_contiguous());
|
||||
TORCH_CHECK(weight.is_contiguous());
|
||||
int hidden_size = input.size(-1);
|
||||
int64_t input_stride = input.stride(-2);
|
||||
int num_tokens = input.numel() / hidden_size;
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
@ -194,9 +204,16 @@ void fused_add_rms_norm(torch::Tensor& input, // [..., hidden_size]
|
||||
auto inp_ptr = reinterpret_cast<std::uintptr_t>(input.data_ptr());
|
||||
auto res_ptr = reinterpret_cast<std::uintptr_t>(residual.data_ptr());
|
||||
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
|
||||
bool ptrs_are_aligned =
|
||||
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0) {
|
||||
constexpr int vector_width = 8;
|
||||
constexpr int req_alignment_bytes =
|
||||
vector_width * 2; // vector_width * sizeof(bfloat16 or float16) (float32
|
||||
// falls back to non-vectorized version anyway)
|
||||
bool ptrs_are_aligned = inp_ptr % req_alignment_bytes == 0 &&
|
||||
res_ptr % req_alignment_bytes == 0 &&
|
||||
wt_ptr % req_alignment_bytes == 0;
|
||||
bool offsets_are_multiple_of_vector_width =
|
||||
hidden_size % vector_width == 0 && input_stride % vector_width == 0;
|
||||
if (ptrs_are_aligned && offsets_are_multiple_of_vector_width) {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||
|
||||
@ -23,8 +23,9 @@ namespace vllm {
|
||||
// TODO(woosuk): Further optimize this kernel.
|
||||
template <typename scalar_t, typename fp8_type>
|
||||
__global__ void rms_norm_static_fp8_quant_kernel(
|
||||
fp8_type* __restrict__ out, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
fp8_type* __restrict__ out, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
const int input_stride,
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float* __restrict__ scale, // [1]
|
||||
const float epsilon, const int num_tokens, const int hidden_size) {
|
||||
@ -32,7 +33,7 @@ __global__ void rms_norm_static_fp8_quant_kernel(
|
||||
float variance = 0.0f;
|
||||
|
||||
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||
const float x = (float)input[blockIdx.x * hidden_size + idx];
|
||||
const float x = (float)input[blockIdx.x * input_stride + idx];
|
||||
variance += x * x;
|
||||
}
|
||||
|
||||
@ -49,7 +50,7 @@ __global__ void rms_norm_static_fp8_quant_kernel(
|
||||
float const scale_inv = 1.0f / *scale;
|
||||
|
||||
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||
float x = (float)input[blockIdx.x * hidden_size + idx];
|
||||
float x = (float)input[blockIdx.x * input_stride + idx];
|
||||
float const out_norm = ((scalar_t)(x * s_variance)) * weight[idx];
|
||||
out[blockIdx.x * hidden_size + idx] =
|
||||
scaled_fp8_conversion<true, fp8_type>(out_norm, scale_inv);
|
||||
@ -63,8 +64,9 @@ __global__ void rms_norm_static_fp8_quant_kernel(
|
||||
template <typename scalar_t, int width, typename fp8_type>
|
||||
__global__ std::enable_if_t<(width > 0) && _typeConvert<scalar_t>::exists>
|
||||
fused_add_rms_norm_static_fp8_quant_kernel(
|
||||
fp8_type* __restrict__ out, // [..., hidden_size]
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
fp8_type* __restrict__ out, // [..., hidden_size]
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
const int input_stride,
|
||||
scalar_t* __restrict__ residual, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float* __restrict__ scale, // [1]
|
||||
@ -74,6 +76,7 @@ fused_add_rms_norm_static_fp8_quant_kernel(
|
||||
static_assert(sizeof(_f16Vec<scalar_t, width>) == sizeof(scalar_t) * width);
|
||||
|
||||
const int vec_hidden_size = hidden_size / width;
|
||||
const int vec_input_stride = input_stride / width;
|
||||
__shared__ float s_variance;
|
||||
float variance = 0.0f;
|
||||
/* These and the argument pointers are all declared `restrict` as they are
|
||||
@ -87,8 +90,9 @@ fused_add_rms_norm_static_fp8_quant_kernel(
|
||||
reinterpret_cast<const _f16Vec<scalar_t, width>*>(weight);
|
||||
|
||||
for (int idx = threadIdx.x; idx < vec_hidden_size; idx += blockDim.x) {
|
||||
int stride_id = blockIdx.x * vec_input_stride + idx;
|
||||
int id = blockIdx.x * vec_hidden_size + idx;
|
||||
_f16Vec<scalar_t, width> temp = input_v[id];
|
||||
_f16Vec<scalar_t, width> temp = input_v[stride_id];
|
||||
temp += residual_v[id];
|
||||
variance += temp.sum_squares();
|
||||
residual_v[id] = temp;
|
||||
@ -125,8 +129,9 @@ fused_add_rms_norm_static_fp8_quant_kernel(
|
||||
template <typename scalar_t, int width, typename fp8_type>
|
||||
__global__ std::enable_if_t<(width == 0) || !_typeConvert<scalar_t>::exists>
|
||||
fused_add_rms_norm_static_fp8_quant_kernel(
|
||||
fp8_type* __restrict__ out, // [..., hidden_size]
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
fp8_type* __restrict__ out, // [..., hidden_size]
|
||||
scalar_t* __restrict__ input, // [..., hidden_size]
|
||||
const int input_stride,
|
||||
scalar_t* __restrict__ residual, // [..., hidden_size]
|
||||
const scalar_t* __restrict__ weight, // [hidden_size]
|
||||
const float* __restrict__ scale, // [1]
|
||||
@ -135,7 +140,7 @@ fused_add_rms_norm_static_fp8_quant_kernel(
|
||||
float variance = 0.0f;
|
||||
|
||||
for (int idx = threadIdx.x; idx < hidden_size; idx += blockDim.x) {
|
||||
scalar_t z = input[blockIdx.x * hidden_size + idx];
|
||||
scalar_t z = input[blockIdx.x * input_stride + idx];
|
||||
z += residual[blockIdx.x * hidden_size + idx];
|
||||
float x = (float)z;
|
||||
variance += x * x;
|
||||
@ -169,7 +174,9 @@ void rms_norm_static_fp8_quant(torch::Tensor& out, // [..., hidden_size]
|
||||
torch::Tensor& weight, // [hidden_size]
|
||||
torch::Tensor& scale, // [1]
|
||||
double epsilon) {
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
int hidden_size = input.size(-1);
|
||||
int input_stride = input.stride(-2);
|
||||
int num_tokens = input.numel() / hidden_size;
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
@ -183,8 +190,9 @@ void rms_norm_static_fp8_quant(torch::Tensor& out, // [..., hidden_size]
|
||||
vllm::rms_norm_static_fp8_quant_kernel<scalar_t, fp8_t>
|
||||
<<<grid, block, 0, stream>>>(
|
||||
out.data_ptr<fp8_t>(), input.data_ptr<scalar_t>(),
|
||||
weight.data_ptr<scalar_t>(), scale.data_ptr<float>(),
|
||||
epsilon, num_tokens, hidden_size);
|
||||
input_stride, weight.data_ptr<scalar_t>(),
|
||||
scale.data_ptr<float>(), epsilon, num_tokens,
|
||||
hidden_size);
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -198,7 +206,7 @@ void rms_norm_static_fp8_quant(torch::Tensor& out, // [..., hidden_size]
|
||||
width, fp8_t> \
|
||||
<<<grid, block, 0, stream>>>( \
|
||||
out.data_ptr<fp8_t>(), input.data_ptr<scalar_t>(), \
|
||||
residual.data_ptr<scalar_t>(), \
|
||||
input_stride, residual.data_ptr<scalar_t>(), \
|
||||
weight.data_ptr<scalar_t>(), scale.data_ptr<float>(), \
|
||||
epsilon, num_tokens, hidden_size); \
|
||||
}); \
|
||||
@ -210,7 +218,10 @@ void fused_add_rms_norm_static_fp8_quant(
|
||||
torch::Tensor& weight, // [hidden_size]
|
||||
torch::Tensor& scale, // [1]
|
||||
double epsilon) {
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
TORCH_CHECK(residual.is_contiguous());
|
||||
int hidden_size = input.size(-1);
|
||||
int input_stride = input.stride(-2);
|
||||
int num_tokens = input.numel() / hidden_size;
|
||||
|
||||
dim3 grid(num_tokens);
|
||||
@ -234,7 +245,7 @@ void fused_add_rms_norm_static_fp8_quant(
|
||||
auto wt_ptr = reinterpret_cast<std::uintptr_t>(weight.data_ptr());
|
||||
bool ptrs_are_aligned =
|
||||
inp_ptr % 16 == 0 && res_ptr % 16 == 0 && wt_ptr % 16 == 0;
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0) {
|
||||
if (ptrs_are_aligned && hidden_size % 8 == 0 && input_stride % 8 == 0) {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(8);
|
||||
} else {
|
||||
LAUNCH_FUSED_ADD_RMS_NORM(0);
|
||||
|
||||
@ -7,7 +7,11 @@
|
||||
|
||||
#include <c10/util/BFloat16.h>
|
||||
#include <c10/util/Half.h>
|
||||
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
||||
#ifdef USE_ROCM
|
||||
#include <c10/hip/HIPException.h> // For C10_HIP_CHECK and C10_HIP_KERNEL_LAUNCH_CHECK
|
||||
#else
|
||||
#include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
|
||||
#endif
|
||||
|
||||
#ifndef USE_ROCM
|
||||
#include <cub/block/block_load.cuh>
|
||||
@ -312,19 +316,25 @@ void selective_scan_fwd_launch(SSMParamsBase ¶ms, cudaStream_t stream) {
|
||||
// kIsVariableB, kIsVariableC and kHasZ are all set to True to reduce binary size
|
||||
constexpr bool kIsVariableB = true;
|
||||
constexpr bool kIsVariableC = true;
|
||||
constexpr bool kHasZ = true;
|
||||
BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
|
||||
BOOL_SWITCH(params.query_start_loc_ptr != nullptr , kVarlen, [&] {
|
||||
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t>;
|
||||
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
|
||||
dim3 grid(params.batch, params.dim / kNRows);
|
||||
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
|
||||
if (kSmemSize >= 48 * 1024) {
|
||||
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
||||
(void *) kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
||||
}
|
||||
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
|
||||
BOOL_SWITCH(params.query_start_loc_ptr != nullptr , kVarlen, [&] {
|
||||
using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, kVarlen, input_t, weight_t>;
|
||||
constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
|
||||
dim3 grid(params.batch, params.dim / kNRows);
|
||||
auto kernel = &selective_scan_fwd_kernel<Ktraits>;
|
||||
if (kSmemSize >= 48 * 1024) {
|
||||
#ifdef USE_ROCM
|
||||
C10_HIP_CHECK(hipFuncSetAttribute(
|
||||
reinterpret_cast<const void*>(kernel), hipFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
||||
#else
|
||||
C10_CUDA_CHECK(cudaFuncSetAttribute(
|
||||
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
|
||||
#endif
|
||||
}
|
||||
kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
|
||||
C10_CUDA_KERNEL_LAUNCH_CHECK();
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
@ -612,19 +622,20 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
|
||||
|
||||
at::Tensor z, out_z;
|
||||
const bool has_z = z_.has_value();
|
||||
TORCH_CHECK(has_z, "has_z = False is disabled in favor of reduced binary size")
|
||||
z = z_.value();
|
||||
TORCH_CHECK(z.scalar_type() == input_type);
|
||||
TORCH_CHECK(z.is_cuda());
|
||||
TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
|
||||
if (varlen){
|
||||
CHECK_SHAPE(z, dim, seqlen);
|
||||
} else {
|
||||
CHECK_SHAPE(z, batch_size, dim, seqlen);
|
||||
if (has_z) {
|
||||
z = z_.value();
|
||||
TORCH_CHECK(z.scalar_type() == input_type);
|
||||
TORCH_CHECK(z.is_cuda());
|
||||
TORCH_CHECK(z.stride(-1) == 1 || z.size(-1) == 1);
|
||||
if (varlen){
|
||||
CHECK_SHAPE(z, dim, seqlen);
|
||||
} else {
|
||||
CHECK_SHAPE(z, batch_size, dim, seqlen);
|
||||
}
|
||||
|
||||
out_z = z;
|
||||
}
|
||||
|
||||
out_z = z;
|
||||
|
||||
// Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
|
||||
at::Tensor out = delta;
|
||||
TORCH_CHECK(ssm_states.scalar_type() == input_type);
|
||||
@ -653,4 +664,3 @@ void selective_scan_fwd(const torch::Tensor &u, const torch::Tensor &delta,
|
||||
selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#include <torch/all.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <cub/cub.cuh>
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <ATen/cuda/Atomic.cuh>
|
||||
@ -19,9 +20,14 @@ __global__ void moe_align_block_size_kernel(
|
||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
||||
int32_t* __restrict__ total_tokens_post_pad, int32_t num_experts,
|
||||
int32_t padded_num_experts, int32_t experts_per_warp, int32_t block_size,
|
||||
size_t numel, int32_t* __restrict__ cumsum) {
|
||||
size_t numel, int32_t* __restrict__ cumsum, int32_t max_num_tokens_padded) {
|
||||
extern __shared__ int32_t shared_counts[];
|
||||
|
||||
// Initialize sorted_token_ids with numel
|
||||
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
|
||||
sorted_token_ids[it] = numel;
|
||||
}
|
||||
|
||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||
const int my_expert_start = warp_id * experts_per_warp;
|
||||
|
||||
@ -45,18 +51,27 @@ __global__ void moe_align_block_size_kernel(
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
cumsum[0] = 0;
|
||||
for (int i = 1; i <= num_experts; ++i) {
|
||||
int expert_count = 0;
|
||||
int warp_idx = (i - 1) / experts_per_warp;
|
||||
int expert_offset = (i - 1) % experts_per_warp;
|
||||
expert_count = shared_counts[warp_idx * experts_per_warp + expert_offset];
|
||||
// Compute prefix sum over token counts per expert
|
||||
using BlockScan = cub::BlockScan<int32_t, 1024>;
|
||||
__shared__ typename BlockScan::TempStorage temp_storage;
|
||||
|
||||
cumsum[i] =
|
||||
cumsum[i - 1] + CEILDIV(expert_count, block_size) * block_size;
|
||||
}
|
||||
*total_tokens_post_pad = cumsum[num_experts];
|
||||
int expert_count = 0;
|
||||
int expert_id = threadIdx.x;
|
||||
if (expert_id < num_experts) {
|
||||
int warp_idx = expert_id / experts_per_warp;
|
||||
int expert_offset = expert_id % experts_per_warp;
|
||||
expert_count = shared_counts[warp_idx * experts_per_warp + expert_offset];
|
||||
expert_count = CEILDIV(expert_count, block_size) * block_size;
|
||||
}
|
||||
|
||||
int cumsum_val;
|
||||
BlockScan(temp_storage).ExclusiveSum(expert_count, cumsum_val);
|
||||
if (expert_id <= num_experts) {
|
||||
cumsum[expert_id] = cumsum_val;
|
||||
}
|
||||
|
||||
if (expert_id == num_experts) {
|
||||
*total_tokens_post_pad = cumsum_val;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
@ -67,6 +82,13 @@ __global__ void moe_align_block_size_kernel(
|
||||
expert_ids[i / block_size] = threadIdx.x;
|
||||
}
|
||||
}
|
||||
|
||||
// Fill remaining expert_ids with 0
|
||||
const size_t fill_start_idx = cumsum[num_experts] / block_size + threadIdx.x;
|
||||
const size_t expert_ids_size = CEILDIV(max_num_tokens_padded, block_size);
|
||||
for (size_t i = fill_start_idx; i < expert_ids_size; i += blockDim.x) {
|
||||
expert_ids[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
@ -105,7 +127,12 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
|
||||
const scalar_t* __restrict__ topk_ids,
|
||||
int32_t* __restrict__ sorted_token_ids, int32_t* __restrict__ expert_ids,
|
||||
int32_t* __restrict__ total_tokens_post_pad, int32_t num_experts,
|
||||
int32_t block_size, size_t numel) {
|
||||
int32_t block_size, size_t numel, int32_t max_num_tokens_padded) {
|
||||
// Initialize sorted_token_ids with numel
|
||||
for (size_t it = threadIdx.x; it < max_num_tokens_padded; it += blockDim.x) {
|
||||
sorted_token_ids[it] = numel;
|
||||
}
|
||||
|
||||
const size_t tid = threadIdx.x;
|
||||
const size_t stride = blockDim.x;
|
||||
|
||||
@ -153,6 +180,13 @@ __global__ void moe_align_block_size_small_batch_expert_kernel(
|
||||
}
|
||||
}
|
||||
|
||||
// Fill remaining expert_ids with 0
|
||||
const size_t fill_start_idx = cumsum[num_experts] / block_size + threadIdx.x;
|
||||
const size_t expert_ids_size = CEILDIV(max_num_tokens_padded, block_size);
|
||||
for (size_t i = fill_start_idx; i < expert_ids_size; i += blockDim.x) {
|
||||
expert_ids[i] = 0;
|
||||
}
|
||||
|
||||
for (size_t i = tid; i < numel; i += stride) {
|
||||
int32_t expert_id = topk_ids[i];
|
||||
int32_t rank_post_pad =
|
||||
@ -179,13 +213,17 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
int threads = 1024;
|
||||
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||
|
||||
// BlockScan uses 1024 threads and assigns one thread per expert.
|
||||
TORCH_CHECK(padded_num_experts < 1024,
|
||||
"padded_num_experts must be less than 1024");
|
||||
|
||||
VLLM_DISPATCH_INTEGRAL_AND_UNSIGNED_TYPES(
|
||||
topk_ids.scalar_type(), "moe_align_block_size_kernel", [&] {
|
||||
// calc needed amount of shared mem for `cumsum` tensors
|
||||
auto options_int =
|
||||
torch::TensorOptions().dtype(torch::kInt).device(topk_ids.device());
|
||||
torch::Tensor cumsum_buffer =
|
||||
torch::zeros({num_experts + 1}, options_int);
|
||||
torch::empty({num_experts + 1}, options_int);
|
||||
bool small_batch_expert_mode =
|
||||
(topk_ids.numel() < 1024) && (num_experts <= 64);
|
||||
|
||||
@ -203,7 +241,7 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
sorted_token_ids.data_ptr<int32_t>(),
|
||||
experts_ids.data_ptr<int32_t>(),
|
||||
num_tokens_post_pad.data_ptr<int32_t>(), num_experts, block_size,
|
||||
topk_ids.numel());
|
||||
topk_ids.numel(), sorted_token_ids.size(0));
|
||||
} else {
|
||||
auto align_kernel = vllm::moe::moe_align_block_size_kernel<scalar_t>;
|
||||
|
||||
@ -217,7 +255,8 @@ void moe_align_block_size(torch::Tensor topk_ids, int64_t num_experts,
|
||||
experts_ids.data_ptr<int32_t>(),
|
||||
num_tokens_post_pad.data_ptr<int32_t>(), num_experts,
|
||||
padded_num_experts, experts_per_warp, block_size,
|
||||
topk_ids.numel(), cumsum_buffer.data_ptr<int32_t>());
|
||||
topk_ids.numel(), cumsum_buffer.data_ptr<int32_t>(),
|
||||
sorted_token_ids.size(0));
|
||||
|
||||
const int block_threads = std::min(256, (int)threads);
|
||||
const int num_blocks =
|
||||
|
||||
@ -10,32 +10,28 @@
|
||||
|
||||
void moe_permute(
|
||||
const torch::Tensor& input, // [n_token, hidden]
|
||||
const torch::Tensor& topk_weights, //[n_token, topk]
|
||||
torch::Tensor& topk_ids, // [n_token, topk]
|
||||
const torch::Tensor& topk_ids, // [n_token, topk]
|
||||
const torch::Tensor& token_expert_indices, // [n_token, topk]
|
||||
const std::optional<torch::Tensor>& expert_map, // [n_expert]
|
||||
int64_t n_expert, int64_t n_local_expert, int64_t topk,
|
||||
const std::optional<int64_t>& align_block_size,
|
||||
torch::Tensor&
|
||||
permuted_input, // [topk * n_token/align_block_size_m, hidden]
|
||||
torch::Tensor& permuted_input, // [permuted_size, hidden]
|
||||
torch::Tensor& expert_first_token_offset, // [n_local_expert + 1]
|
||||
torch::Tensor& src_row_id2dst_row_id_map, // [n_token, topk]
|
||||
torch::Tensor& inv_permuted_idx, // [n_token, topk]
|
||||
torch::Tensor& permuted_idx, // [permute_size]
|
||||
torch::Tensor& m_indices) { // [align_expand_m]
|
||||
TORCH_CHECK(topk_weights.scalar_type() == at::ScalarType::Float,
|
||||
"topk_weights must be float32");
|
||||
TORCH_CHECK(expert_first_token_offset.scalar_type() == at::ScalarType::Long,
|
||||
"expert_first_token_offset must be int64");
|
||||
TORCH_CHECK(topk_ids.scalar_type() == at::ScalarType::Int,
|
||||
"topk_ids must be int32");
|
||||
TORCH_CHECK(token_expert_indices.scalar_type() == at::ScalarType::Int,
|
||||
"token_expert_indices must be int32");
|
||||
TORCH_CHECK(src_row_id2dst_row_id_map.scalar_type() == at::ScalarType::Int,
|
||||
"src_row_id2dst_row_id_map must be int32");
|
||||
TORCH_CHECK(inv_permuted_idx.scalar_type() == at::ScalarType::Int,
|
||||
"inv_permuted_idx must be int32");
|
||||
TORCH_CHECK(expert_first_token_offset.size(0) == n_local_expert + 1,
|
||||
"expert_first_token_offset shape != n_local_expert+1")
|
||||
TORCH_CHECK(
|
||||
src_row_id2dst_row_id_map.sizes() == token_expert_indices.sizes(),
|
||||
"token_expert_indices shape must be same as src_row_id2dst_row_id_map");
|
||||
TORCH_CHECK(inv_permuted_idx.sizes() == token_expert_indices.sizes(),
|
||||
"token_expert_indices shape must be same as inv_permuted_idx");
|
||||
auto n_token = input.sizes()[0];
|
||||
auto n_hidden = input.sizes()[1];
|
||||
auto align_block_size_value =
|
||||
@ -46,8 +42,9 @@ void moe_permute(
|
||||
auto sort_workspace = torch::empty(
|
||||
{sorter_size},
|
||||
torch::dtype(torch::kInt8).device(torch::kCUDA).requires_grad(false));
|
||||
auto copy_topk_ids = topk_ids.clone(); // copy topk_ids for preprocess
|
||||
auto permuted_experts_id = torch::empty_like(topk_ids);
|
||||
auto dst_row_id2src_row_id_map = torch::empty_like(src_row_id2dst_row_id_map);
|
||||
auto sorted_row_idx = torch::empty_like(inv_permuted_idx);
|
||||
auto align_expert_first_token_offset =
|
||||
torch::zeros_like(expert_first_token_offset);
|
||||
|
||||
@ -67,24 +64,22 @@ void moe_permute(
|
||||
const int* expert_map_ptr = get_ptr<int>(expert_map.value());
|
||||
valid_num_ptr =
|
||||
get_ptr<int64_t>(expert_first_token_offset) + n_local_expert;
|
||||
preprocessTopkIdLauncher(get_ptr<int>(topk_ids), n_token * topk,
|
||||
preprocessTopkIdLauncher(get_ptr<int>(copy_topk_ids), n_token * topk,
|
||||
expert_map_ptr, n_expert, stream);
|
||||
}
|
||||
// expert sort topk expert id and scan expert id get expert_first_token_offset
|
||||
sortAndScanExpert(get_ptr<int>(topk_ids), get_ptr<int>(token_expert_indices),
|
||||
get_ptr<int>(permuted_experts_id),
|
||||
get_ptr<int>(dst_row_id2src_row_id_map),
|
||||
get_ptr<int64_t>(expert_first_token_offset), n_token,
|
||||
n_expert, n_local_expert, topk, sorter,
|
||||
get_ptr<int>(sort_workspace), stream);
|
||||
sortAndScanExpert(
|
||||
get_ptr<int>(copy_topk_ids), get_ptr<int>(token_expert_indices),
|
||||
get_ptr<int>(permuted_experts_id), get_ptr<int>(sorted_row_idx),
|
||||
get_ptr<int64_t>(expert_first_token_offset), n_token, n_expert,
|
||||
n_local_expert, topk, sorter, get_ptr<int>(sort_workspace), stream);
|
||||
|
||||
// dispatch expandInputRowsKernelLauncher
|
||||
MOE_DISPATCH(input.scalar_type(), [&] {
|
||||
expandInputRowsKernelLauncher<scalar_t>(
|
||||
get_ptr<scalar_t>(input), get_ptr<scalar_t>(permuted_input),
|
||||
get_ptr<float>(topk_weights), get_ptr<int>(permuted_experts_id),
|
||||
get_ptr<int>(dst_row_id2src_row_id_map),
|
||||
get_ptr<int>(src_row_id2dst_row_id_map),
|
||||
get_ptr<int>(permuted_experts_id), get_ptr<int>(sorted_row_idx),
|
||||
get_ptr<int>(inv_permuted_idx), get_ptr<int>(permuted_idx),
|
||||
get_ptr<int64_t>(expert_first_token_offset), n_token, valid_num_ptr,
|
||||
n_hidden, topk, n_local_expert, align_block_size_value, stream);
|
||||
});
|
||||
@ -101,32 +96,34 @@ void moe_permute(
|
||||
}
|
||||
|
||||
void moe_unpermute(
|
||||
const torch::Tensor& permuted_hidden_states, // [n_token * topk, hidden]
|
||||
const torch::Tensor& topk_weights, //[n_token, topk]
|
||||
const torch::Tensor& topk_ids, // [n_token, topk]
|
||||
const torch::Tensor& src_row_id2dst_row_id_map, // [n_token, topk]
|
||||
const torch::Tensor& expert_first_token_offset, // [n_local_expert+1]
|
||||
int64_t n_expert, int64_t n_local_expert, int64_t topk,
|
||||
const torch::Tensor& permuted_hidden_states, // [n_token * topk, hidden]
|
||||
const torch::Tensor& topk_weights, // [n_token, topk]
|
||||
const torch::Tensor& inv_permuted_idx, // [n_token, topk]
|
||||
const std::optional<torch::Tensor>&
|
||||
expert_first_token_offset, // [n_local_expert+1]
|
||||
int64_t topk,
|
||||
torch::Tensor& hidden_states // [n_token, hidden]
|
||||
) {
|
||||
TORCH_CHECK(src_row_id2dst_row_id_map.sizes() == topk_ids.sizes(),
|
||||
"topk_ids shape must be same as src_row_id2dst_row_id_map");
|
||||
TORCH_CHECK(topk_ids.scalar_type() == at::ScalarType::Int,
|
||||
"topk_ids must be int32");
|
||||
TORCH_CHECK(
|
||||
permuted_hidden_states.scalar_type() == hidden_states.scalar_type(),
|
||||
"topk_ids dtype must be same as src_row_id2dst_row_id_map");
|
||||
"permuted_hidden_states dtype must be same as hidden_states");
|
||||
auto n_token = hidden_states.size(0);
|
||||
auto n_hidden = hidden_states.size(1);
|
||||
auto stream = at::cuda::getCurrentCUDAStream().stream();
|
||||
const int64_t* valid_ptr =
|
||||
get_ptr<int64_t>(expert_first_token_offset) + n_local_expert;
|
||||
|
||||
int64_t const* valid_ptr = nullptr;
|
||||
if (expert_first_token_offset.has_value()) {
|
||||
int n_local_expert = expert_first_token_offset.value().size(0) - 1;
|
||||
valid_ptr =
|
||||
get_ptr<int64_t>(expert_first_token_offset.value()) + n_local_expert;
|
||||
}
|
||||
|
||||
MOE_DISPATCH(hidden_states.scalar_type(), [&] {
|
||||
finalizeMoeRoutingKernelLauncher<scalar_t, scalar_t>(
|
||||
get_ptr<scalar_t>(permuted_hidden_states),
|
||||
get_ptr<scalar_t>(hidden_states), get_ptr<float>(topk_weights),
|
||||
get_ptr<int>(src_row_id2dst_row_id_map), get_ptr<int>(topk_ids),
|
||||
n_token, n_hidden, topk, valid_ptr, stream);
|
||||
get_ptr<int>(inv_permuted_idx), n_token, n_hidden, topk, valid_ptr,
|
||||
stream);
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
@ -177,7 +177,7 @@ __global__ void getMIndicesKernel(int64_t* expert_first_token_offset,
|
||||
int tidx = threadIdx.x;
|
||||
extern __shared__ int64_t smem_expert_first_token_offset[];
|
||||
for (int i = tidx; i <= num_local_expert; i += blockDim.x) {
|
||||
smem_expert_first_token_offset[tidx] = __ldg(expert_first_token_offset + i);
|
||||
smem_expert_first_token_offset[i] = __ldg(expert_first_token_offset + i);
|
||||
}
|
||||
__syncthreads();
|
||||
auto last_token_offset = smem_expert_first_token_offset[eidx + 1];
|
||||
|
||||
@ -57,31 +57,19 @@ void sortAndScanExpert(int* expert_for_source_row, const int* source_rows,
|
||||
|
||||
template <typename T>
|
||||
void expandInputRowsKernelLauncher(
|
||||
T const* unpermuted_input, T* permuted_output,
|
||||
const float* unpermuted_scales, int* sorted_experts,
|
||||
T const* unpermuted_input, T* permuted_output, int* sorted_experts,
|
||||
int const* expanded_dest_row_to_expanded_source_row,
|
||||
int* expanded_source_row_to_expanded_dest_row,
|
||||
int* expanded_source_row_to_expanded_dest_row, int* permuted_idx,
|
||||
int64_t* expert_first_token_offset, int64_t const num_rows,
|
||||
int64_t const* num_valid_tokens_ptr, int64_t const cols, int const k,
|
||||
int num_local_experts, const int& align_block_size, cudaStream_t stream);
|
||||
|
||||
// Final kernel to unpermute and scale
|
||||
// This kernel unpermutes the original data, does the k-way reduction and
|
||||
// performs the final skip connection.
|
||||
template <typename T, typename OutputType, bool CHECK_SKIPPED>
|
||||
__global__ void finalizeMoeRoutingKernel(
|
||||
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
|
||||
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
|
||||
int const* expert_for_source_row, int64_t const orig_cols, int64_t const k,
|
||||
int64_t const* num_valid_ptr);
|
||||
|
||||
template <class T, class OutputType>
|
||||
void finalizeMoeRoutingKernelLauncher(
|
||||
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
|
||||
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
|
||||
int const* expert_for_source_row, int64_t const num_rows,
|
||||
int64_t const cols, int64_t const k, int64_t const* num_valid_ptr,
|
||||
cudaStream_t stream);
|
||||
int64_t const num_rows, int64_t const cols, int64_t const k,
|
||||
int64_t const* num_valid_ptr, cudaStream_t stream);
|
||||
|
||||
void preprocessTopkIdLauncher(int* topk_id_ptr, int size,
|
||||
const int* expert_map_ptr, int num_experts,
|
||||
|
||||
@ -2,10 +2,9 @@
|
||||
|
||||
template <typename T, bool CHECK_SKIPPED, bool ALIGN_BLOCK_SIZE>
|
||||
__global__ void expandInputRowsKernel(
|
||||
T const* unpermuted_input, T* permuted_output,
|
||||
const float* unpermuted_scales, int* sorted_experts,
|
||||
T const* unpermuted_input, T* permuted_output, int* sorted_experts,
|
||||
int const* expanded_dest_row_to_expanded_source_row,
|
||||
int* expanded_source_row_to_expanded_dest_row,
|
||||
int* expanded_source_row_to_expanded_dest_row, int* permuted_idx,
|
||||
int64_t* expert_first_token_offset, int64_t const num_rows,
|
||||
int64_t const* num_dest_rows, int64_t const cols, int64_t k,
|
||||
int num_local_experts, int align_block_size) {
|
||||
@ -54,6 +53,10 @@ __global__ void expandInputRowsKernel(
|
||||
assert(expanded_dest_row <= INT32_MAX);
|
||||
expanded_source_row_to_expanded_dest_row[expanded_source_row] =
|
||||
static_cast<int>(expanded_dest_row);
|
||||
// skip non local expert token
|
||||
if (!CHECK_SKIPPED || blockIdx.x < *num_dest_rows) {
|
||||
permuted_idx[expanded_dest_row] = expanded_source_row;
|
||||
}
|
||||
}
|
||||
|
||||
if (!CHECK_SKIPPED || blockIdx.x < *num_dest_rows) {
|
||||
@ -62,7 +65,7 @@ __global__ void expandInputRowsKernel(
|
||||
using DataElem = cutlass::Array<T, ELEM_PER_THREAD>;
|
||||
|
||||
// Duplicate and permute rows
|
||||
int64_t const source_row = expanded_source_row % num_rows;
|
||||
int64_t const source_row = expanded_source_row / k;
|
||||
|
||||
auto const* source_row_ptr =
|
||||
reinterpret_cast<DataElem const*>(unpermuted_input + source_row * cols);
|
||||
@ -82,10 +85,9 @@ __global__ void expandInputRowsKernel(
|
||||
|
||||
template <typename T>
|
||||
void expandInputRowsKernelLauncher(
|
||||
T const* unpermuted_input, T* permuted_output,
|
||||
const float* unpermuted_scales, int* sorted_experts,
|
||||
T const* unpermuted_input, T* permuted_output, int* sorted_experts,
|
||||
int const* expanded_dest_row_to_expanded_source_row,
|
||||
int* expanded_source_row_to_expanded_dest_row,
|
||||
int* expanded_source_row_to_expanded_dest_row, int* permuted_idx,
|
||||
int64_t* expert_first_token_offset, int64_t const num_rows,
|
||||
int64_t const* num_valid_tokens_ptr, int64_t const cols, int const k,
|
||||
int num_local_experts, const int& align_block_size, cudaStream_t stream) {
|
||||
@ -105,11 +107,11 @@ void expandInputRowsKernelLauncher(
|
||||
int64_t smem_size = sizeof(int64_t) * (num_local_experts + 1);
|
||||
|
||||
func<<<blocks, threads, smem_size, stream>>>(
|
||||
unpermuted_input, permuted_output, unpermuted_scales, sorted_experts,
|
||||
unpermuted_input, permuted_output, sorted_experts,
|
||||
expanded_dest_row_to_expanded_source_row,
|
||||
expanded_source_row_to_expanded_dest_row, expert_first_token_offset,
|
||||
num_rows, num_valid_tokens_ptr, cols, k, num_local_experts,
|
||||
align_block_size);
|
||||
expanded_source_row_to_expanded_dest_row, permuted_idx,
|
||||
expert_first_token_offset, num_rows, num_valid_tokens_ptr, cols, k,
|
||||
num_local_experts, align_block_size);
|
||||
}
|
||||
|
||||
template <class T, class U>
|
||||
@ -128,11 +130,9 @@ template <typename T, typename OutputType, bool CHECK_SKIPPED>
|
||||
__global__ void finalizeMoeRoutingKernel(
|
||||
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
|
||||
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
|
||||
int const* expert_for_source_row, int64_t const orig_cols, int64_t const k,
|
||||
int64_t const* num_valid_ptr) {
|
||||
int64_t const orig_cols, int64_t const k, int64_t const* num_valid_ptr) {
|
||||
assert(orig_cols % 4 == 0);
|
||||
int64_t const original_row = blockIdx.x;
|
||||
int64_t const num_rows = gridDim.x;
|
||||
auto const offset = original_row * orig_cols;
|
||||
OutputType* reduced_row_ptr = reduced_unpermuted_output + offset;
|
||||
int64_t const num_valid = *num_valid_ptr;
|
||||
@ -159,14 +159,13 @@ __global__ void finalizeMoeRoutingKernel(
|
||||
ComputeElem thread_output;
|
||||
thread_output.fill(0);
|
||||
for (int k_idx = 0; k_idx < k; ++k_idx) {
|
||||
int64_t const expanded_original_row = original_row + k_idx * num_rows;
|
||||
int64_t const expanded_original_row = original_row * k + k_idx;
|
||||
int64_t const expanded_permuted_row =
|
||||
expanded_source_row_to_expanded_dest_row[expanded_original_row];
|
||||
|
||||
int64_t const k_offset = original_row * k + k_idx;
|
||||
float const row_scale = scales[k_offset];
|
||||
|
||||
// Check after row_rescale has accumulated
|
||||
if (CHECK_SKIPPED && expanded_permuted_row >= num_valid) {
|
||||
continue;
|
||||
}
|
||||
@ -189,9 +188,8 @@ template <class T, class OutputType>
|
||||
void finalizeMoeRoutingKernelLauncher(
|
||||
T const* expanded_permuted_rows, OutputType* reduced_unpermuted_output,
|
||||
float const* scales, int const* expanded_source_row_to_expanded_dest_row,
|
||||
int const* expert_for_source_row, int64_t const num_rows,
|
||||
int64_t const cols, int64_t const k, int64_t const* num_valid_ptr,
|
||||
cudaStream_t stream) {
|
||||
int64_t const num_rows, int64_t const cols, int64_t const k,
|
||||
int64_t const* num_valid_ptr, cudaStream_t stream) {
|
||||
int64_t const blocks = num_rows;
|
||||
int64_t const threads = 256;
|
||||
bool const check_finished = num_valid_ptr != nullptr;
|
||||
@ -201,6 +199,5 @@ void finalizeMoeRoutingKernelLauncher(
|
||||
auto* const kernel = func_map[check_finished];
|
||||
kernel<<<blocks, threads, 0, stream>>>(
|
||||
expanded_permuted_rows, reduced_unpermuted_output, scales,
|
||||
expanded_source_row_to_expanded_dest_row, expert_for_source_row, cols, k,
|
||||
num_valid_ptr);
|
||||
expanded_source_row_to_expanded_dest_row, cols, k, num_valid_ptr);
|
||||
}
|
||||
|
||||
@ -190,8 +190,8 @@ __launch_bounds__(TPB) __global__ void moeTopK(
|
||||
2) This implementation assumes k is small, but will work for any k.
|
||||
*/
|
||||
|
||||
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG, typename IndType>
|
||||
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
|
||||
template <int VPT, int NUM_EXPERTS, int WARPS_PER_CTA, int BYTES_PER_LDG, int WARP_SIZE_PARAM, typename IndType>
|
||||
__launch_bounds__(WARPS_PER_CTA* WARP_SIZE_PARAM) __global__
|
||||
void topkGatingSoftmax(const float* input, const bool* finished, float* output, const int num_rows, IndType* indices,
|
||||
int* source_rows, const int k, const int start_expert, const int end_expert)
|
||||
{
|
||||
@ -209,12 +209,12 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
|
||||
|
||||
// Restrictions based on previous section.
|
||||
static_assert(VPT % ELTS_PER_LDG == 0, "The elements per thread must be a multiple of the elements per ldg");
|
||||
static_assert(WARP_SIZE % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
|
||||
static_assert(WARP_SIZE_PARAM % THREADS_PER_ROW == 0, "The threads per row must cleanly divide the threads per warp");
|
||||
static_assert(THREADS_PER_ROW == (THREADS_PER_ROW & -THREADS_PER_ROW), "THREADS_PER_ROW must be power of 2");
|
||||
static_assert(THREADS_PER_ROW <= WARP_SIZE, "THREADS_PER_ROW can be at most warp size");
|
||||
static_assert(THREADS_PER_ROW <= WARP_SIZE_PARAM, "THREADS_PER_ROW can be at most warp size");
|
||||
|
||||
// We have NUM_EXPERTS elements per row. We specialize for small #experts
|
||||
static constexpr int ELTS_PER_WARP = WARP_SIZE * VPT;
|
||||
static constexpr int ELTS_PER_WARP = WARP_SIZE_PARAM * VPT;
|
||||
static constexpr int ROWS_PER_WARP = ELTS_PER_WARP / ELTS_PER_ROW;
|
||||
static constexpr int ROWS_PER_CTA = WARPS_PER_CTA * ROWS_PER_WARP;
|
||||
|
||||
@ -393,41 +393,51 @@ __launch_bounds__(WARPS_PER_CTA* WARP_SIZE) __global__
|
||||
namespace detail
|
||||
{
|
||||
// Constructs some constants needed to partition the work across threads at compile time.
|
||||
template <int EXPERTS, int BYTES_PER_LDG>
|
||||
template <int EXPERTS, int BYTES_PER_LDG, int WARP_SIZE_PARAM>
|
||||
struct TopkConstants
|
||||
{
|
||||
static constexpr int ELTS_PER_LDG = BYTES_PER_LDG / sizeof(float);
|
||||
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE) == 0, "");
|
||||
static constexpr int VECs_PER_THREAD = MAX(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE));
|
||||
static_assert(EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0 || EXPERTS % (ELTS_PER_LDG * WARP_SIZE_PARAM) == 0, "");
|
||||
static constexpr int VECs_PER_THREAD = MAX(1, EXPERTS / (ELTS_PER_LDG * WARP_SIZE_PARAM));
|
||||
static constexpr int VPT = VECs_PER_THREAD * ELTS_PER_LDG;
|
||||
static constexpr int THREADS_PER_ROW = EXPERTS / VPT;
|
||||
static constexpr int ROWS_PER_WARP = WARP_SIZE / THREADS_PER_ROW;
|
||||
static const int ROWS_PER_WARP = WARP_SIZE_PARAM / THREADS_PER_ROW;
|
||||
};
|
||||
} // namespace detail
|
||||
|
||||
template <int EXPERTS, int WARPS_PER_TB, typename IndType>
|
||||
template <int EXPERTS, int WARPS_PER_TB, int WARP_SIZE_PARAM, typename IndType>
|
||||
void topkGatingSoftmaxLauncherHelper(const float* input, const bool* finished, float* output, IndType* indices,
|
||||
int* source_row, const int num_rows, const int k, const int start_expert, const int end_expert, cudaStream_t stream)
|
||||
{
|
||||
static constexpr std::size_t MAX_BYTES_PER_LDG = 16;
|
||||
|
||||
static constexpr int BYTES_PER_LDG = MIN(MAX_BYTES_PER_LDG, sizeof(float) * EXPERTS);
|
||||
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG>;
|
||||
using Constants = detail::TopkConstants<EXPERTS, BYTES_PER_LDG, WARP_SIZE_PARAM>;
|
||||
static constexpr int VPT = Constants::VPT;
|
||||
static constexpr int ROWS_PER_WARP = Constants::ROWS_PER_WARP;
|
||||
const int num_warps = (num_rows + ROWS_PER_WARP - 1) / ROWS_PER_WARP;
|
||||
const int num_blocks = (num_warps + WARPS_PER_TB - 1) / WARPS_PER_TB;
|
||||
|
||||
dim3 block_dim(WARP_SIZE, WARPS_PER_TB);
|
||||
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG><<<num_blocks, block_dim, 0, stream>>>(
|
||||
dim3 block_dim(WARP_SIZE_PARAM, WARPS_PER_TB);
|
||||
topkGatingSoftmax<VPT, EXPERTS, WARPS_PER_TB, BYTES_PER_LDG, WARP_SIZE_PARAM><<<num_blocks, block_dim, 0, stream>>>(
|
||||
input, finished, output, num_rows, indices, source_row, k, start_expert, end_expert);
|
||||
}
|
||||
|
||||
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB) \
|
||||
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB>( \
|
||||
gating_output, nullptr, topk_weights, topk_indices, \
|
||||
token_expert_indices, num_tokens, topk, 0, num_experts, \
|
||||
stream);
|
||||
#define LAUNCH_SOFTMAX(NUM_EXPERTS, WARPS_PER_TB) \
|
||||
switch (warpSize) { \
|
||||
case 32: \
|
||||
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 32>( \
|
||||
gating_output, nullptr, topk_weights, topk_indices, \
|
||||
token_expert_indices, num_tokens, topk, 0, num_experts, stream); \
|
||||
break; \
|
||||
case 64: \
|
||||
topkGatingSoftmaxLauncherHelper<NUM_EXPERTS, WARPS_PER_TB, 64>( \
|
||||
gating_output, nullptr, topk_weights, topk_indices, \
|
||||
token_expert_indices, num_tokens, topk, 0, num_experts, stream); \
|
||||
break; \
|
||||
default: \
|
||||
TORCH_CHECK(false, "Unsupported warp size: ", warpSize); \
|
||||
}
|
||||
|
||||
template <typename IndType>
|
||||
void topkGatingSoftmaxKernelLauncher(
|
||||
@ -441,6 +451,7 @@ void topkGatingSoftmaxKernelLauncher(
|
||||
const int topk,
|
||||
cudaStream_t stream) {
|
||||
static constexpr int WARPS_PER_TB = 4;
|
||||
auto warpSize = WARP_SIZE;
|
||||
switch (num_experts) {
|
||||
case 1:
|
||||
LAUNCH_SOFTMAX(1, WARPS_PER_TB);
|
||||
|
||||
@ -56,18 +56,17 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, m) {
|
||||
" -> Tensor");
|
||||
|
||||
m.def(
|
||||
"moe_permute(Tensor input, Tensor topk_weight, Tensor! topk_ids,"
|
||||
"moe_permute(Tensor input, Tensor topk_ids,"
|
||||
"Tensor token_expert_indices, Tensor? expert_map, int n_expert,"
|
||||
"int n_local_expert,"
|
||||
"int topk, int? align_block_size,Tensor! permuted_input, Tensor! "
|
||||
"expert_first_token_offset, Tensor! src_row_id2dst_row_id_map, Tensor! "
|
||||
"m_indices)->()");
|
||||
"expert_first_token_offset, Tensor! inv_permuted_idx, Tensor! "
|
||||
"permuted_idx, Tensor! m_indices)->()");
|
||||
|
||||
m.def(
|
||||
"moe_unpermute(Tensor permuted_hidden_states, Tensor topk_weights,"
|
||||
"Tensor topk_ids,Tensor src_row_id2dst_row_id_map, Tensor "
|
||||
"expert_first_token_offset, int n_expert, int n_local_expert,int "
|
||||
"topk, Tensor! hidden_states)->()");
|
||||
"Tensor inv_permuted_idx, Tensor? expert_first_token_offset, "
|
||||
"int topk, Tensor! hidden_states)->()");
|
||||
|
||||
m.def("moe_permute_unpermute_supported() -> bool");
|
||||
m.impl("moe_permute_unpermute_supported", &moe_permute_unpermute_supported);
|
||||
|
||||
10
csrc/ops.h
10
csrc/ops.h
@ -287,6 +287,16 @@ void scaled_fp4_experts_quant(
|
||||
torch::Tensor const& input, torch::Tensor const& input_global_scale,
|
||||
torch::Tensor const& input_offset_by_experts,
|
||||
torch::Tensor const& output_scale_offset_by_experts);
|
||||
|
||||
void per_token_group_quant_fp8(const torch::Tensor& input,
|
||||
torch::Tensor& output_q, torch::Tensor& output_s,
|
||||
int64_t group_size, double eps, double fp8_min,
|
||||
double fp8_max, bool scale_ue8m0);
|
||||
|
||||
void per_token_group_quant_int8(const torch::Tensor& input,
|
||||
torch::Tensor& output_q,
|
||||
torch::Tensor& output_s, int64_t group_size,
|
||||
double eps, double int8_min, double int8_max);
|
||||
#endif
|
||||
|
||||
void static_scaled_int8_quant(torch::Tensor& out, torch::Tensor const& input,
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
|
||||
#include <cmath>
|
||||
#include "core/math.hpp"
|
||||
#include "cuda_compat.h"
|
||||
#include "../cuda_compat.h"
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
#include "quantization/fp8/common.cuh"
|
||||
|
||||
@ -1,6 +1,8 @@
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <torch/all.h>
|
||||
|
||||
#include "../per_token_group_quant_8bit.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include "../../dispatch_utils.h"
|
||||
@ -336,3 +338,11 @@ void dynamic_scaled_int8_quant(
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void per_token_group_quant_int8(const torch::Tensor& input,
|
||||
torch::Tensor& output_q,
|
||||
torch::Tensor& output_s, int64_t group_size,
|
||||
double eps, double int8_min, double int8_max) {
|
||||
per_token_group_quant_8bit(input, output_q, output_s, group_size, eps,
|
||||
int8_min, int8_max);
|
||||
}
|
||||
@ -201,11 +201,10 @@ void run_blockwise_scaled_group_mm(
|
||||
reinterpret_cast<typename ScheduleConfig::LayoutSFB*>(
|
||||
layout_sfb.data_ptr())};
|
||||
|
||||
cutlass::KernelHardwareInfo hw_info;
|
||||
hw_info.device_id = a_ptrs.get_device();
|
||||
hw_info.sm_count =
|
||||
cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
|
||||
hw_info.device_id);
|
||||
int device_id = a_ptrs.device().index();
|
||||
static const cutlass::KernelHardwareInfo hw_info{
|
||||
device_id, cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
|
||||
device_id)};
|
||||
|
||||
// Epilogue Arguments
|
||||
typename GemmKernel::EpilogueArguments epilogue_args{
|
||||
|
||||
@ -18,28 +18,34 @@ using ProblemShape =
|
||||
cutlass::gemm::GroupProblemShape<cute::Shape<int, int, int>>;
|
||||
|
||||
using ElementAccumulator = float;
|
||||
using ArchTag = cutlass::arch::Sm90;
|
||||
using OperatorClass = cutlass::arch::OpClassTensorOp;
|
||||
|
||||
using LayoutA = cutlass::layout::RowMajor;
|
||||
using LayoutA_Transpose =
|
||||
typename cutlass::layout::LayoutTranspose<LayoutA>::type;
|
||||
using LayoutB = cutlass::layout::ColumnMajor;
|
||||
using LayoutC = cutlass::layout::RowMajor;
|
||||
using LayoutB_Transpose =
|
||||
typename cutlass::layout::LayoutTranspose<LayoutB>::type;
|
||||
using LayoutD = cutlass::layout::RowMajor;
|
||||
using LayoutD_Transpose =
|
||||
typename cutlass::layout::LayoutTranspose<LayoutD>::type;
|
||||
using LayoutC = LayoutD;
|
||||
using LayoutC_Transpose = LayoutD_Transpose;
|
||||
|
||||
template <typename ElementAB_, typename ElementC_,
|
||||
template <typename ElementAB_, typename ElementC_, typename ArchTag_,
|
||||
template <typename, typename, typename> typename Epilogue_,
|
||||
typename TileShape, typename ClusterShape, typename KernelSchedule,
|
||||
typename EpilogueSchedule>
|
||||
typename EpilogueSchedule, bool swap_ab_ = false>
|
||||
struct cutlass_3x_group_gemm {
|
||||
static constexpr bool swap_ab = swap_ab_;
|
||||
using ElementAB = ElementAB_;
|
||||
using ElementC = void;
|
||||
using ElementD = ElementC_;
|
||||
using ElementAccumulator = float;
|
||||
using ArchTag = ArchTag_;
|
||||
|
||||
using Epilogue = Epilogue_<ElementAccumulator, ElementD, TileShape>;
|
||||
|
||||
using StrideC =
|
||||
cute::remove_pointer_t<cute::Stride<int64_t, cute::Int<1>, cute::Int<0>>>;
|
||||
|
||||
static constexpr int AlignmentAB =
|
||||
128 / cutlass::sizeof_bits<ElementAB>::value;
|
||||
static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementD>::value;
|
||||
@ -50,21 +56,28 @@ struct cutlass_3x_group_gemm {
|
||||
typename cutlass::epilogue::collective::CollectiveBuilder<
|
||||
ArchTag, OperatorClass, TileShape, ClusterShape,
|
||||
cutlass::epilogue::collective::EpilogueTileAuto, ElementAccumulator,
|
||||
ElementAccumulator, ElementC, LayoutC*, AlignmentC, ElementD,
|
||||
LayoutC*, AlignmentC, EpilogueSchedule, EVTCompute>::CollectiveOp;
|
||||
ElementAccumulator, ElementC,
|
||||
conditional_t<swap_ab, LayoutC_Transpose*, LayoutC*>, AlignmentC,
|
||||
ElementD, conditional_t<swap_ab, LayoutD_Transpose*, LayoutD*>,
|
||||
AlignmentC, EpilogueSchedule, EVTCompute>::CollectiveOp;
|
||||
|
||||
static constexpr size_t CEStorageSize =
|
||||
sizeof(typename CollectiveEpilogue::SharedStorage);
|
||||
using Stages = typename cutlass::gemm::collective::StageCountAutoCarveout<
|
||||
static_cast<int>(CEStorageSize)>;
|
||||
|
||||
using CollectiveMainloop =
|
||||
using CollectiveMainloop = conditional_t<
|
||||
swap_ab,
|
||||
typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag, OperatorClass, ElementAB, LayoutB_Transpose*, AlignmentAB,
|
||||
ElementAB, LayoutA_Transpose*, AlignmentAB, ElementAccumulator,
|
||||
TileShape, ClusterShape, Stages, KernelSchedule>::CollectiveOp,
|
||||
typename cutlass::gemm::collective::CollectiveBuilder<
|
||||
ArchTag, OperatorClass, ElementAB, LayoutA*, AlignmentAB, ElementAB,
|
||||
LayoutB*, AlignmentAB, ElementAccumulator, TileShape, ClusterShape,
|
||||
Stages, KernelSchedule>::CollectiveOp;
|
||||
Stages, KernelSchedule>::CollectiveOp>;
|
||||
|
||||
using KernelType = enable_sm90_only<cutlass::gemm::kernel::GemmUniversal<
|
||||
using KernelType = enable_sm90_or_later<cutlass::gemm::kernel::GemmUniversal<
|
||||
ProblemShape, CollectiveMainloop, CollectiveEpilogue>>;
|
||||
|
||||
struct GemmKernel : public KernelType {};
|
||||
@ -78,12 +91,12 @@ void cutlass_group_gemm_caller(
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
static constexpr bool swap_ab = Gemm::swap_ab;
|
||||
|
||||
using ElementAB = typename Gemm::ElementAB;
|
||||
using ElementD = typename Gemm::ElementD;
|
||||
|
||||
int num_experts = static_cast<int>(expert_offsets.size(0));
|
||||
int k_size = a_tensors.size(1);
|
||||
int n_size = out_tensors.size(1);
|
||||
|
||||
auto stream = at::cuda::getCurrentCUDAStream(a_tensors.device().index());
|
||||
|
||||
@ -110,26 +123,47 @@ void cutlass_group_gemm_caller(
|
||||
problem_sizes.data_ptr());
|
||||
ProblemShape prob_shape{num_experts, problem_sizes_as_shapes, nullptr};
|
||||
|
||||
typename GemmKernel::MainloopArguments mainloop_args{
|
||||
static_cast<const ElementAB**>(a_ptrs.data_ptr()),
|
||||
static_cast<StrideA*>(a_strides.data_ptr()),
|
||||
static_cast<const ElementAB**>(b_ptrs.data_ptr()),
|
||||
static_cast<StrideB*>(b_strides.data_ptr())};
|
||||
typename GemmKernel::MainloopArguments mainloop_args;
|
||||
if constexpr (swap_ab) {
|
||||
mainloop_args = typename GemmKernel::MainloopArguments{
|
||||
static_cast<const ElementAB**>(b_ptrs.data_ptr()),
|
||||
static_cast<StrideB*>(b_strides.data_ptr()),
|
||||
static_cast<const ElementAB**>(a_ptrs.data_ptr()),
|
||||
static_cast<StrideA*>(a_strides.data_ptr())};
|
||||
} else {
|
||||
mainloop_args = typename GemmKernel::MainloopArguments{
|
||||
static_cast<const ElementAB**>(a_ptrs.data_ptr()),
|
||||
static_cast<StrideA*>(a_strides.data_ptr()),
|
||||
static_cast<const ElementAB**>(b_ptrs.data_ptr()),
|
||||
static_cast<StrideB*>(b_strides.data_ptr())};
|
||||
}
|
||||
|
||||
// Currently, we are only able to do broadcast on either all or none a_scales
|
||||
// and on either all or none b_scales
|
||||
typename GemmKernel::EpilogueArguments epilogue_args{
|
||||
Gemm::Epilogue::prepare_args(
|
||||
static_cast<const ElementAccumulator**>(a_scales_ptrs.data_ptr()),
|
||||
static_cast<const ElementAccumulator**>(b_scales_ptrs.data_ptr()),
|
||||
per_act_token, per_out_ch),
|
||||
swap_ab ? static_cast<const ElementAccumulator**>(
|
||||
b_scales_ptrs.data_ptr())
|
||||
: static_cast<const ElementAccumulator**>(
|
||||
a_scales_ptrs.data_ptr()),
|
||||
swap_ab ? static_cast<const ElementAccumulator**>(
|
||||
a_scales_ptrs.data_ptr())
|
||||
: static_cast<const ElementAccumulator**>(
|
||||
b_scales_ptrs.data_ptr()),
|
||||
swap_ab ? per_out_ch : per_act_token,
|
||||
swap_ab ? per_act_token : per_out_ch),
|
||||
nullptr, static_cast<StrideC*>(c_strides.data_ptr()),
|
||||
static_cast<ElementD**>(out_ptrs.data_ptr()),
|
||||
static_cast<StrideC*>(c_strides.data_ptr())};
|
||||
|
||||
int device_id = a_tensors.device().index();
|
||||
static const cutlass::KernelHardwareInfo hw_info{
|
||||
device_id, cutlass::KernelHardwareInfo::query_device_multiprocessor_count(
|
||||
device_id)};
|
||||
|
||||
typename GemmKernel::Arguments args{
|
||||
cutlass::gemm::GemmUniversalMode::kGrouped, prob_shape, mainloop_args,
|
||||
epilogue_args};
|
||||
epilogue_args, hw_info};
|
||||
|
||||
using GemmOp = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;
|
||||
GemmOp gemm_op;
|
||||
|
||||
140
csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu
Normal file
140
csrc/quantization/cutlass_w8a8/moe/grouped_mm_c3x_sm100.cu
Normal file
@ -0,0 +1,140 @@
|
||||
#include <cudaTypedefs.h>
|
||||
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <torch/all.h>
|
||||
|
||||
#include "cutlass/cutlass.h"
|
||||
#include "grouped_mm_c3x.cuh"
|
||||
|
||||
using namespace cute;
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_default {
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule =
|
||||
cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmSm100;
|
||||
using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
|
||||
using TileShape = cute::Shape<cute::_128, cute::_256, cute::_128>;
|
||||
using ClusterShape = cute::Shape<cute::_1, cute::_1, cute::_1>;
|
||||
using ArchTag = cutlass::arch::Sm100;
|
||||
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
|
||||
ClusterShape, KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_M64 {
|
||||
// M in [1,64]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule =
|
||||
cutlass::gemm::KernelPtrArrayTmaWarpSpecialized1SmSm100;
|
||||
using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized1Sm;
|
||||
using TileShape = cute::Shape<cute::_128, cute::_16, cute::_128>;
|
||||
using ClusterShape = cute::Shape<cute::_1, cute::_1, cute::_1>;
|
||||
using ArchTag = cutlass::arch::Sm100;
|
||||
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
|
||||
ClusterShape, KernelSchedule, EpilogueSchedule,
|
||||
true>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm100_fp8_config_N8192 {
|
||||
// N in [8192, inf)
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule =
|
||||
cutlass::gemm::KernelPtrArrayTmaWarpSpecialized2SmSm100;
|
||||
using EpilogueSchedule = cutlass::epilogue::PtrArrayTmaWarpSpecialized2Sm;
|
||||
using TileShape = cute::Shape<cute::_128, cute::_256, cute::_128>;
|
||||
using ClusterShape = cute::Shape<cute::_2, cute::_1, cute::_1>;
|
||||
using ArchTag = cutlass::arch::Sm100;
|
||||
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
|
||||
ClusterShape, KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType>
|
||||
void run_cutlass_moe_mm_sm100(
|
||||
torch::Tensor& out_tensors, torch::Tensor const& a_tensors,
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
TORCH_CHECK(a_tensors.size(0) > 0, "No input A tensors provided.");
|
||||
TORCH_CHECK(b_tensors.size(0) > 0, "No input B tensors provided.");
|
||||
TORCH_CHECK(out_tensors.size(0) > 0, "No output tensors provided.");
|
||||
|
||||
TORCH_CHECK(a_tensors.dtype() == torch::kFloat8_e4m3fn,
|
||||
"A tensors must be of type float8_e4m3fn.");
|
||||
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn,
|
||||
"B tensors must be of type float8_e4m3fn.");
|
||||
|
||||
using Cutlass3xGemmDefault = typename sm100_fp8_config_default<
|
||||
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmN8192 = typename sm100_fp8_config_N8192<
|
||||
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmM64 = typename sm100_fp8_config_M64<
|
||||
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
|
||||
|
||||
uint32_t const m = a_tensors.size(0);
|
||||
uint32_t const n = out_tensors.size(1);
|
||||
|
||||
if (m <= 64) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmM64>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else if (n >= 8192) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmN8192>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmDefault>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
void dispatch_moe_mm_sm100(
|
||||
torch::Tensor& out_tensors, torch::Tensor const& a_tensors,
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
if (out_tensors.dtype() == torch::kBFloat16) {
|
||||
run_cutlass_moe_mm_sm100<cutlass::float_e4m3_t, cutlass::bfloat16_t>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else {
|
||||
run_cutlass_moe_mm_sm100<cutlass::float_e4m3_t, cutlass::half_t>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
}
|
||||
}
|
||||
|
||||
void cutlass_moe_mm_sm100(
|
||||
torch::Tensor& out_tensors, torch::Tensor const& a_tensors,
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
dispatch_moe_mm_sm100(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
}
|
||||
@ -21,27 +21,49 @@ struct sm90_fp8_config_default {
|
||||
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
|
||||
using TileShape = cute::Shape<cute::_64, cute::_256, cute::_128>;
|
||||
using ClusterShape = cute::Shape<cute::_1, cute::_2, cute::_1>;
|
||||
using ArchTag = cutlass::arch::Sm90;
|
||||
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_group_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
|
||||
ClusterShape, KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm90_fp8_config_M16 {
|
||||
// M in [1, 16]
|
||||
struct sm90_fp8_config_M4 {
|
||||
// M in [1, 4]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule =
|
||||
cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpongFP8FastAccum;
|
||||
using EpilogueSchedule =
|
||||
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
|
||||
using TileShape = cute::Shape<cute::_64, cute::_64, cute::_128>;
|
||||
using ClusterShape = cute::Shape<cute::_1, cute::_4, cute::_1>;
|
||||
using TileShape = cute::Shape<cute::_128, cute::_16, cute::_128>;
|
||||
using ClusterShape = cute::Shape<cute::_1, cute::_1, cute::_1>;
|
||||
using ArchTag = cutlass::arch::Sm90;
|
||||
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_group_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
|
||||
ClusterShape, KernelSchedule, EpilogueSchedule,
|
||||
true>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
template <typename, typename, typename> typename Epilogue>
|
||||
struct sm90_fp8_config_M64 {
|
||||
// M in (4, 64]
|
||||
static_assert(std::is_same<InType, cutlass::float_e4m3_t>());
|
||||
using KernelSchedule =
|
||||
cutlass::gemm::KernelPtrArrayTmaWarpSpecializedPingpongFP8FastAccum;
|
||||
using EpilogueSchedule =
|
||||
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
|
||||
using TileShape = cute::Shape<cute::_128, cute::_16, cute::_256>;
|
||||
using ClusterShape = cute::Shape<cute::_2, cute::_1, cute::_1>;
|
||||
using ArchTag = cutlass::arch::Sm90;
|
||||
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
|
||||
ClusterShape, KernelSchedule, EpilogueSchedule,
|
||||
true>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
@ -55,10 +77,11 @@ struct sm90_fp8_config_K8192 {
|
||||
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
|
||||
using TileShape = cute::Shape<cute::_128, cute::_128, cute::_128>;
|
||||
using ClusterShape = cute::Shape<cute::_1, cute::_8, cute::_1>;
|
||||
using ArchTag = cutlass::arch::Sm90;
|
||||
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_group_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
|
||||
ClusterShape, KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType,
|
||||
@ -72,10 +95,11 @@ struct sm90_fp8_config_N8192 {
|
||||
cutlass::epilogue::PtrArrayTmaWarpSpecializedPingpong;
|
||||
using TileShape = cute::Shape<cute::_64, cute::_128, cute::_256>;
|
||||
using ClusterShape = cute::Shape<cute::_1, cute::_8, cute::_1>;
|
||||
using ArchTag = cutlass::arch::Sm90;
|
||||
|
||||
using Cutlass3xGemm =
|
||||
cutlass_3x_group_gemm<InType, OutType, Epilogue, TileShape, ClusterShape,
|
||||
KernelSchedule, EpilogueSchedule>;
|
||||
cutlass_3x_group_gemm<InType, OutType, ArchTag, Epilogue, TileShape,
|
||||
ClusterShape, KernelSchedule, EpilogueSchedule>;
|
||||
};
|
||||
|
||||
template <typename InType, typename OutType>
|
||||
@ -95,14 +119,13 @@ void run_cutlass_moe_mm_sm90(
|
||||
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn,
|
||||
"B tensors must be of type float8_e4m3fn.");
|
||||
|
||||
TORCH_CHECK(a_tensors.dtype() == torch::kFloat8_e4m3fn);
|
||||
TORCH_CHECK(b_tensors.dtype() == torch::kFloat8_e4m3fn);
|
||||
|
||||
using Cutlass3xGemmN8192 = typename sm90_fp8_config_N8192<
|
||||
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmK8192 = typename sm90_fp8_config_K8192<
|
||||
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmM16 = typename sm90_fp8_config_M16<
|
||||
using Cutlass3xGemmM4 = typename sm90_fp8_config_M4<
|
||||
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmM64 = typename sm90_fp8_config_M64<
|
||||
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
|
||||
using Cutlass3xGemmDefault = typename sm90_fp8_config_default<
|
||||
InType, OutType, vllm::c3x::ScaledEpilogueArray>::Cutlass3xGemm;
|
||||
@ -111,7 +134,18 @@ void run_cutlass_moe_mm_sm90(
|
||||
uint32_t const n = out_tensors.size(1);
|
||||
uint32_t const k = a_tensors.size(1);
|
||||
|
||||
if (n >= 8192) {
|
||||
// Use swap_ab for M <= 64 by default to reduce padding
|
||||
if (m <= 4) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmM4>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else if (m <= 64) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmM64>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else if (n >= 8192) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmN8192>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
@ -121,11 +155,6 @@ void run_cutlass_moe_mm_sm90(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else if (m <= 16) {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmM16>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
problem_sizes, a_strides, b_strides, c_strides, per_act_token,
|
||||
per_out_ch);
|
||||
} else {
|
||||
cutlass_group_gemm_caller<Cutlass3xGemmDefault>(
|
||||
out_tensors, a_tensors, b_tensors, a_scales, b_scales, expert_offsets,
|
||||
@ -6,7 +6,10 @@
|
||||
#include <iostream>
|
||||
|
||||
constexpr uint64_t THREADS_PER_EXPERT = 512;
|
||||
// threshold must match the dispatch logic in run_cutlass_moe_mm_sm90()
|
||||
constexpr int SWAP_AB_THRESHOLD = 64;
|
||||
|
||||
template <bool SWAP_AB>
|
||||
__global__ void compute_problem_sizes(const int32_t* __restrict__ topk_ids,
|
||||
int32_t* problem_sizes1,
|
||||
int32_t* problem_sizes2,
|
||||
@ -24,40 +27,51 @@ __global__ void compute_problem_sizes(const int32_t* __restrict__ topk_ids,
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
int final_occurrences = atomic_buffer[expert_id];
|
||||
problem_sizes1[expert_id * 3] = final_occurrences;
|
||||
problem_sizes1[expert_id * 3 + 1] = 2 * n;
|
||||
problem_sizes1[expert_id * 3 + 2] = k;
|
||||
problem_sizes2[expert_id * 3] = final_occurrences;
|
||||
problem_sizes2[expert_id * 3 + 1] = k;
|
||||
problem_sizes2[expert_id * 3 + 2] = n;
|
||||
if constexpr (!SWAP_AB) {
|
||||
problem_sizes1[expert_id * 3] = final_occurrences;
|
||||
problem_sizes1[expert_id * 3 + 1] = 2 * n;
|
||||
problem_sizes1[expert_id * 3 + 2] = k;
|
||||
problem_sizes2[expert_id * 3] = final_occurrences;
|
||||
problem_sizes2[expert_id * 3 + 1] = k;
|
||||
problem_sizes2[expert_id * 3 + 2] = n;
|
||||
} else {
|
||||
problem_sizes1[expert_id * 3] = 2 * n;
|
||||
problem_sizes1[expert_id * 3 + 1] = final_occurrences;
|
||||
problem_sizes1[expert_id * 3 + 2] = k;
|
||||
problem_sizes2[expert_id * 3] = k;
|
||||
problem_sizes2[expert_id * 3 + 1] = final_occurrences;
|
||||
problem_sizes2[expert_id * 3 + 2] = n;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compute_expert_offsets(
|
||||
const int32_t* __restrict__ problem_sizes1, int32_t* expert_offsets,
|
||||
int32_t* atomic_buffer, const int num_experts) {
|
||||
int32_t* atomic_buffer, const int num_experts, const bool swap_ab) {
|
||||
int32_t tot_offset = 0;
|
||||
expert_offsets[0] = 0;
|
||||
for (int i = 0; i < num_experts; ++i) {
|
||||
atomic_buffer[i] = tot_offset;
|
||||
tot_offset += problem_sizes1[i * 3];
|
||||
tot_offset += swap_ab ? problem_sizes1[i * 3 + 1] : problem_sizes1[i * 3];
|
||||
expert_offsets[i + 1] = tot_offset;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void compute_expert_blockscale_offsets(
|
||||
const int32_t* __restrict__ problem_sizes1, int32_t* expert_offsets,
|
||||
int32_t* blockscale_offsets, int32_t* atomic_buffer,
|
||||
const int num_experts) {
|
||||
int32_t* blockscale_offsets, int32_t* atomic_buffer, const int num_experts,
|
||||
const bool swap_ab) {
|
||||
int32_t tot_offset = 0;
|
||||
int32_t tot_offset_round = 0;
|
||||
expert_offsets[0] = 0;
|
||||
blockscale_offsets[0] = 0;
|
||||
for (int i = 0; i < num_experts; ++i) {
|
||||
int32_t cur_offset =
|
||||
swap_ab ? problem_sizes1[i * 3 + 1] : problem_sizes1[i * 3];
|
||||
atomic_buffer[i] = tot_offset;
|
||||
tot_offset += problem_sizes1[i * 3];
|
||||
tot_offset += cur_offset;
|
||||
expert_offsets[i + 1] = tot_offset;
|
||||
tot_offset_round += (problem_sizes1[i * 3] + (128 - 1)) / 128 * 128;
|
||||
tot_offset_round += (cur_offset + (128 - 1)) / 128 * 128;
|
||||
blockscale_offsets[i + 1] = tot_offset_round;
|
||||
}
|
||||
}
|
||||
@ -102,22 +116,41 @@ void get_cutlass_moe_mm_data_caller(
|
||||
torch::Tensor atomic_buffer = torch::zeros(num_experts, options_int32);
|
||||
|
||||
int num_threads = min(THREADS_PER_EXPERT, topk_ids.numel());
|
||||
compute_problem_sizes<<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n, k);
|
||||
|
||||
// Swap-AB should be disabled for FP4 path
|
||||
bool may_swap_ab = (!blockscale_offsets.has_value()) &&
|
||||
(topk_ids.numel() <= SWAP_AB_THRESHOLD);
|
||||
|
||||
if (may_swap_ab) {
|
||||
compute_problem_sizes<true><<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n,
|
||||
k);
|
||||
} else {
|
||||
compute_problem_sizes<false><<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), topk_ids.numel(), n,
|
||||
k);
|
||||
}
|
||||
|
||||
if (blockscale_offsets.has_value()) {
|
||||
// fp4 path
|
||||
compute_expert_blockscale_offsets<<<1, 1, 0, stream>>>(
|
||||
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(blockscale_offsets.value().data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts,
|
||||
may_swap_ab);
|
||||
} else {
|
||||
compute_expert_offsets<<<1, 1, 0, stream>>>(
|
||||
static_cast<const int32_t*>(problem_sizes1.data_ptr()),
|
||||
static_cast<int32_t*>(expert_offsets.data_ptr()),
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts);
|
||||
static_cast<int32_t*>(atomic_buffer.data_ptr()), num_experts,
|
||||
may_swap_ab);
|
||||
}
|
||||
compute_arg_sorts<<<num_experts, num_threads, 0, stream>>>(
|
||||
static_cast<const int32_t*>(topk_ids.data_ptr()),
|
||||
@ -160,4 +193,4 @@ void get_cutlass_pplx_moe_mm_data_caller(torch::Tensor& expert_offsets,
|
||||
static_cast<int32_t*>(problem_sizes2.data_ptr()),
|
||||
static_cast<const int32_t*>(expert_num_tokens.data_ptr()), padded_m, n,
|
||||
k);
|
||||
}
|
||||
}
|
||||
@ -41,6 +41,16 @@ void cutlass_moe_mm_sm90(
|
||||
|
||||
#endif
|
||||
|
||||
#if defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100
|
||||
void cutlass_moe_mm_sm100(
|
||||
torch::Tensor& out_tensors, torch::Tensor const& a_tensors,
|
||||
torch::Tensor const& b_tensors, torch::Tensor const& a_scales,
|
||||
torch::Tensor const& b_scales, torch::Tensor const& expert_offsets,
|
||||
torch::Tensor const& problem_sizes, torch::Tensor const& a_strides,
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch);
|
||||
#endif
|
||||
|
||||
#if defined ENABLE_SCALED_MM_SM120 && ENABLE_SCALED_MM_SM120
|
||||
void cutlass_scaled_mm_sm120(torch::Tensor& c, torch::Tensor const& a,
|
||||
torch::Tensor const& b,
|
||||
@ -130,10 +140,10 @@ bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability) {
|
||||
// and at least SM90 (Hopper)
|
||||
|
||||
#if defined CUDA_VERSION
|
||||
if (cuda_device_capability >= 90 && cuda_device_capability < 100) {
|
||||
return CUDA_VERSION >= 12000;
|
||||
} else if (cuda_device_capability >= 100) {
|
||||
if (cuda_device_capability >= 100) {
|
||||
return CUDA_VERSION >= 12080;
|
||||
} else if (cuda_device_capability >= 90) {
|
||||
return CUDA_VERSION >= 12000;
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -141,11 +151,14 @@ bool cutlass_scaled_mm_supports_block_fp8(int64_t cuda_device_capability) {
|
||||
}
|
||||
|
||||
bool cutlass_group_gemm_supported(int64_t cuda_device_capability) {
|
||||
// CUTLASS grouped FP8 kernels need at least CUDA 12.3
|
||||
// and SM90 (Hopper)
|
||||
// CUTLASS grouped FP8 kernels need at least CUDA 12.3 and SM90 (Hopper)
|
||||
// or CUDA 12.8 and SM100 (Blackwell)
|
||||
|
||||
#if defined CUDA_VERSION
|
||||
if (cuda_device_capability == 90) {
|
||||
if (cuda_device_capability >= 100) {
|
||||
return CUDA_VERSION >= 12080;
|
||||
}
|
||||
if (cuda_device_capability >= 90) {
|
||||
return CUDA_VERSION >= 12030;
|
||||
}
|
||||
#endif
|
||||
@ -234,16 +247,26 @@ void cutlass_moe_mm(
|
||||
torch::Tensor const& b_strides, torch::Tensor const& c_strides,
|
||||
bool per_act_token, bool per_out_ch) {
|
||||
int32_t version_num = get_sm_version_num();
|
||||
#if defined ENABLE_CUTLASS_MOE_SM100 && ENABLE_CUTLASS_MOE_SM100
|
||||
if (version_num >= 100) {
|
||||
cutlass_moe_mm_sm100(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
#if defined ENABLE_CUTLASS_MOE_SM90 && ENABLE_CUTLASS_MOE_SM90
|
||||
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
return;
|
||||
if (version_num >= 90) {
|
||||
cutlass_moe_mm_sm90(out_tensors, a_tensors, b_tensors, a_scales, b_scales,
|
||||
expert_offsets, problem_sizes, a_strides, b_strides,
|
||||
c_strides, per_act_token, per_out_ch);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
TORCH_CHECK_NOT_IMPLEMENTED(
|
||||
false,
|
||||
"No compiled cutlass_scaled_mm for CUDA device capability: ", version_num,
|
||||
". Required capability: 90");
|
||||
". Required capability: 90 or 100");
|
||||
}
|
||||
|
||||
void get_cutlass_moe_mm_data(
|
||||
|
||||
@ -30,35 +30,40 @@
|
||||
|
||||
#include "cutlass/util/packed_stride.hpp"
|
||||
|
||||
#include "core/math.hpp"
|
||||
|
||||
using namespace cute;
|
||||
|
||||
#if defined(CUTLASS_ARCH_MMA_SM100_SUPPORTED)
|
||||
// Kernel Perf config
|
||||
template <typename T>
|
||||
struct KernelTraits;
|
||||
|
||||
template <>
|
||||
struct KernelTraits<float> {
|
||||
using MmaTileShape = Shape<_128, _128, _256>;
|
||||
// Configuration for M in (256, inf)
|
||||
struct sm100_fp4_config_default {
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_256, _256, _256>;
|
||||
using ClusterShape = Shape<_2, _1, _1>;
|
||||
using PerSmTileShape_MNK = Shape<_128, _256, _256>;
|
||||
};
|
||||
|
||||
// Configuration for M in (16, 256]
|
||||
struct sm100_fp4_config_M256 {
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_256, _128, _256>;
|
||||
using ClusterShape = Shape<_2, _1, _1>;
|
||||
using PerSmTileShape_MNK = Shape<_128, _128, _256>;
|
||||
};
|
||||
|
||||
// Configuration for M in [1, 16]
|
||||
struct sm100_fp4_config_M16 {
|
||||
using KernelSchedule = cutlass::gemm::collective::KernelScheduleAuto;
|
||||
using EpilogueSchedule = cutlass::epilogue::collective::EpilogueScheduleAuto;
|
||||
using TileShape = Shape<_128, _128, _256>;
|
||||
using ClusterShape = Shape<_1, _1, _1>;
|
||||
using PerSmTileShape_MNK = Shape<_128, _128, _256>;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct KernelTraits<cutlass::half_t> {
|
||||
using MmaTileShape = Shape<_256, _256, _256>;
|
||||
using ClusterShape = Shape<_4, _4, _1>;
|
||||
using PerSmTileShape_MNK = Shape<_128, _256, _256>;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct KernelTraits<cutlass::bfloat16_t> {
|
||||
using MmaTileShape = Shape<_256, _256, _256>;
|
||||
using ClusterShape = Shape<_4, _4, _1>;
|
||||
using PerSmTileShape_MNK = Shape<_128, _256, _256>;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
template <typename Config, typename OutType>
|
||||
struct Fp4GemmSm100 {
|
||||
// A matrix configuration
|
||||
using ElementA = cutlass::nv_float4_t<cutlass::float_e2m1_t>;
|
||||
@ -71,21 +76,22 @@ struct Fp4GemmSm100 {
|
||||
static constexpr int AlignmentB = 32;
|
||||
|
||||
// C/D matrix configuration
|
||||
using ElementD = T;
|
||||
using ElementC = T;
|
||||
using ElementD = OutType;
|
||||
using ElementC = OutType;
|
||||
using LayoutCTag = cutlass::layout::RowMajor;
|
||||
using LayoutDTag = cutlass::layout::RowMajor;
|
||||
static constexpr int AlignmentD = 128 / cutlass::sizeof_bits<ElementD>::value;
|
||||
static constexpr int AlignmentC = 128 / cutlass::sizeof_bits<ElementC>::value;
|
||||
|
||||
// Kernel functional config
|
||||
using ElementAccumulator = float;
|
||||
using ArchTag = cutlass::arch::Sm100;
|
||||
using OperatorClass = cutlass::arch::OpClassBlockScaledTensorOp;
|
||||
|
||||
// Kernel Perf config
|
||||
using MmaTileShape = typename KernelTraits<T>::MmaTileShape;
|
||||
using ClusterShape = typename KernelTraits<T>::ClusterShape;
|
||||
using PerSmTileShape_MNK = typename KernelTraits<T>::PerSmTileShape_MNK;
|
||||
// Use config's tile shapes
|
||||
using MmaTileShape = typename Config::TileShape;
|
||||
using ClusterShape = typename Config::ClusterShape;
|
||||
using PerSmTileShape_MNK = typename Config::PerSmTileShape_MNK;
|
||||
|
||||
using CollectiveEpilogue =
|
||||
typename cutlass::epilogue::collective::CollectiveBuilder<
|
||||
@ -119,22 +125,22 @@ struct Fp4GemmSm100 {
|
||||
using LayoutD = decltype(cute::make_layout(make_shape(0, 0, 0), StrideD{}));
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
typename T::Gemm::Arguments args_from_options(
|
||||
template <typename Config>
|
||||
typename Config::Gemm::Arguments args_from_options(
|
||||
at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
|
||||
at::Tensor const& A_sf, at::Tensor const& B_sf, at::Tensor const& alpha,
|
||||
int64_t M, int64_t N, int64_t K) {
|
||||
using ElementA = typename T::Gemm::ElementA;
|
||||
using ElementB = typename T::Gemm::ElementB;
|
||||
using ElementA = typename Config::Gemm::ElementA;
|
||||
using ElementB = typename Config::Gemm::ElementB;
|
||||
using ElementSFA = cutlass::float_ue4m3_t;
|
||||
using ElementSFB = cutlass::float_ue4m3_t;
|
||||
using ElementD = typename T::Gemm::ElementD;
|
||||
using ElementD = typename Config::Gemm::ElementD;
|
||||
using ElementCompute = float;
|
||||
using StrideA = typename T::StrideA;
|
||||
using StrideB = typename T::StrideB;
|
||||
using StrideD = typename T::StrideD;
|
||||
using Sm100BlkScaledConfig =
|
||||
typename T::Gemm::GemmKernel::CollectiveMainloop::Sm1xxBlkScaledConfig;
|
||||
using StrideA = typename Config::StrideA;
|
||||
using StrideB = typename Config::StrideB;
|
||||
using StrideD = typename Config::StrideD;
|
||||
using Sm100BlkScaledConfig = typename Config::Gemm::GemmKernel::
|
||||
CollectiveMainloop::Sm1xxBlkScaledConfig;
|
||||
|
||||
int m = static_cast<int>(M);
|
||||
int n = static_cast<int>(N);
|
||||
@ -148,7 +154,7 @@ typename T::Gemm::Arguments args_from_options(
|
||||
auto layout_SFB = Sm100BlkScaledConfig::tile_atom_to_shape_SFB(
|
||||
cute::make_shape(m, n, k, 1));
|
||||
|
||||
typename T::Gemm::Arguments arguments{
|
||||
typename Config::Gemm::Arguments arguments{
|
||||
cutlass::gemm::GemmUniversalMode::kGemm,
|
||||
{m, n, k, 1},
|
||||
{// Mainloop arguments
|
||||
@ -167,17 +173,17 @@ typename T::Gemm::Arguments args_from_options(
|
||||
return arguments;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
template <typename Config>
|
||||
void runGemm(at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
|
||||
at::Tensor const& A_sf, at::Tensor const& B_sf,
|
||||
at::Tensor const& alpha, int64_t m, int64_t n, int64_t k,
|
||||
cudaStream_t stream) {
|
||||
typename Fp4GemmSm100<T>::Gemm gemm;
|
||||
typename Config::Gemm gemm;
|
||||
|
||||
auto arguments =
|
||||
args_from_options<Fp4GemmSm100<T>>(D, A, B, A_sf, B_sf, alpha, m, n, k);
|
||||
args_from_options<Config>(D, A, B, A_sf, B_sf, alpha, m, n, k);
|
||||
|
||||
size_t workspace_size = Fp4GemmSm100<T>::Gemm::get_workspace_size(arguments);
|
||||
size_t workspace_size = Config::Gemm::get_workspace_size(arguments);
|
||||
auto const workspace_options =
|
||||
torch::TensorOptions().dtype(torch::kUInt8).device(A.device());
|
||||
auto workspace = torch::empty(workspace_size, workspace_options);
|
||||
@ -188,12 +194,40 @@ void runGemm(at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
|
||||
|
||||
CUTLASS_CHECK(gemm.run(arguments, workspace.data_ptr(), stream));
|
||||
}
|
||||
|
||||
// Dispatch function to select appropriate config based on M
|
||||
template <typename OutType>
|
||||
void cutlass_fp4_gemm_dispatch(torch::Tensor& D, torch::Tensor const& A,
|
||||
torch::Tensor const& B,
|
||||
torch::Tensor const& A_sf,
|
||||
torch::Tensor const& B_sf,
|
||||
torch::Tensor const& alpha, int64_t m, int64_t n,
|
||||
int64_t k, cudaStream_t stream) {
|
||||
uint32_t const mp2 = std::max(static_cast<uint32_t>(16), next_pow_2(m));
|
||||
|
||||
if (mp2 <= 16) {
|
||||
// m in [1, 16]
|
||||
runGemm<Fp4GemmSm100<sm100_fp4_config_M16, OutType>>(
|
||||
D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
|
||||
} else if (mp2 <= 256) {
|
||||
// m in (16, 256]
|
||||
runGemm<Fp4GemmSm100<sm100_fp4_config_M256, OutType>>(
|
||||
D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
|
||||
} else {
|
||||
// m in (256, inf)
|
||||
runGemm<Fp4GemmSm100<sm100_fp4_config_default, OutType>>(
|
||||
D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
template <typename T>
|
||||
void runGemm(at::Tensor& D, at::Tensor const& A, at::Tensor const& B,
|
||||
at::Tensor const& A_sf, at::Tensor const& B_sf,
|
||||
at::Tensor const& alpha, int64_t m, int64_t n, int64_t k,
|
||||
cudaStream_t stream) {
|
||||
template <typename OutType>
|
||||
void cutlass_fp4_gemm_dispatch(torch::Tensor& D, torch::Tensor const& A,
|
||||
torch::Tensor const& B,
|
||||
torch::Tensor const& A_sf,
|
||||
torch::Tensor const& B_sf,
|
||||
torch::Tensor const& alpha, int64_t m, int64_t n,
|
||||
int64_t k, cudaStream_t stream) {
|
||||
TORCH_CHECK(false,
|
||||
"Unsupported CUTLASS version. Set VLLM_CUTLASS_SRC_DIR to "
|
||||
"a CUTLASS 3.8 source directory to enable support.");
|
||||
@ -271,12 +305,13 @@ void cutlass_scaled_fp4_mm_sm100a(torch::Tensor& D, torch::Tensor const& A,
|
||||
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(A.get_device());
|
||||
|
||||
if (out_dtype == at::ScalarType::Half) {
|
||||
runGemm<cutlass::half_t>(D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
|
||||
cutlass_fp4_gemm_dispatch<cutlass::half_t>(D, A, B, A_sf, B_sf, alpha, m, n,
|
||||
k, stream);
|
||||
} else if (out_dtype == at::ScalarType::BFloat16) {
|
||||
runGemm<cutlass::bfloat16_t>(D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
|
||||
} else if (out_dtype == at::ScalarType::Float) {
|
||||
runGemm<float>(D, A, B, A_sf, B_sf, alpha, m, n, k, stream);
|
||||
cutlass_fp4_gemm_dispatch<cutlass::bfloat16_t>(D, A, B, A_sf, B_sf, alpha,
|
||||
m, n, k, stream);
|
||||
} else {
|
||||
TORCH_CHECK(false, "Unsupported output data type of nvfp4 mm");
|
||||
TORCH_CHECK(false, "Unsupported output data type of nvfp4 mm (", out_dtype,
|
||||
")");
|
||||
}
|
||||
}
|
||||
|
||||
@ -88,6 +88,8 @@ void static_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor const& input, // [..., d]
|
||||
torch::Tensor const& scale) // [1]
|
||||
{
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
int const block_size = 256;
|
||||
int const num_tokens = input.numel() / input.size(-1);
|
||||
int const num_elems = input.numel();
|
||||
@ -111,6 +113,8 @@ void dynamic_scaled_fp8_quant(torch::Tensor& out, // [..., d]
|
||||
torch::Tensor const& input, // [..., d]
|
||||
torch::Tensor& scale) // [1]
|
||||
{
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(out.is_contiguous());
|
||||
int const block_size = 256;
|
||||
int const num_tokens = input.numel() / input.size(-1);
|
||||
int const num_elems = input.numel();
|
||||
|
||||
217
csrc/quantization/fp8/per_token_group_quant.cu
Normal file
217
csrc/quantization/fp8/per_token_group_quant.cu
Normal file
@ -0,0 +1,217 @@
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <c10/util/Float8_e4m3fn.h>
|
||||
|
||||
#include "../per_token_group_quant_8bit.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_bf16.h>
|
||||
|
||||
#include <torch/all.h>
|
||||
|
||||
#include "../vectorization.cuh"
|
||||
#include "../vectorization_utils.cuh"
|
||||
#include "../../dispatch_utils.h"
|
||||
|
||||
__device__ __forceinline__ float GroupReduceMax(float val, const int tid) {
|
||||
unsigned mask = 0xffff;
|
||||
|
||||
val = fmaxf(val, __shfl_xor_sync(mask, val, 8));
|
||||
val = fmaxf(val, __shfl_xor_sync(mask, val, 4));
|
||||
val = fmaxf(val, __shfl_xor_sync(mask, val, 2));
|
||||
val = fmaxf(val, __shfl_xor_sync(mask, val, 1));
|
||||
return val;
|
||||
}
|
||||
|
||||
template <typename T, typename DST_DTYPE, bool IS_COLUMN_MAJOR = false,
|
||||
bool SCALE_UE8M0 = false, typename scale_packed_t = float>
|
||||
__global__ void per_token_group_quant_8bit_kernel(
|
||||
const T* __restrict__ input, void* __restrict__ output_q,
|
||||
scale_packed_t* __restrict__ output_s, const int group_size,
|
||||
const int num_groups, const int groups_per_block, const float eps,
|
||||
const float min_8bit, const float max_8bit, const int scale_num_rows = 0,
|
||||
const int scale_stride = 0) {
|
||||
const int threads_per_group = 16;
|
||||
const int64_t local_group_id = threadIdx.x / threads_per_group;
|
||||
const int lane_id = threadIdx.x % threads_per_group;
|
||||
|
||||
const int64_t block_group_id = blockIdx.x * groups_per_block;
|
||||
const int64_t global_group_id = block_group_id + local_group_id;
|
||||
const int64_t block_group_offset = global_group_id * group_size;
|
||||
|
||||
float local_absmax = eps;
|
||||
|
||||
using scale_element_t = float;
|
||||
static_assert(sizeof(scale_packed_t) % sizeof(scale_element_t) == 0);
|
||||
|
||||
const T* group_input = input + block_group_offset;
|
||||
DST_DTYPE* group_output =
|
||||
static_cast<DST_DTYPE*>(output_q) + block_group_offset;
|
||||
scale_element_t* scale_output;
|
||||
|
||||
if constexpr (IS_COLUMN_MAJOR) {
|
||||
const int num_elems_per_pack =
|
||||
static_cast<int>(sizeof(scale_packed_t) / sizeof(scale_element_t));
|
||||
const int scale_num_rows_element = scale_num_rows * num_elems_per_pack;
|
||||
const int row_idx = global_group_id / scale_num_rows_element;
|
||||
const int col_idx_raw = global_group_id % scale_num_rows_element;
|
||||
const int col_idx = col_idx_raw / num_elems_per_pack;
|
||||
const int pack_idx = col_idx_raw % num_elems_per_pack;
|
||||
scale_output = reinterpret_cast<scale_element_t*>(output_s) +
|
||||
(col_idx * scale_stride * num_elems_per_pack +
|
||||
row_idx * num_elems_per_pack + pack_idx);
|
||||
} else {
|
||||
scale_output = output_s + global_group_id;
|
||||
}
|
||||
|
||||
// shared memory to cache each group's data to avoid double DRAM reads.
|
||||
extern __shared__ __align__(16) char smem_raw[];
|
||||
T* smem = reinterpret_cast<T*>(smem_raw);
|
||||
T* smem_group = smem + local_group_id * group_size;
|
||||
|
||||
constexpr int vec_size = 16 / sizeof(T);
|
||||
using vec_t = vllm::vec_n_t<T, vec_size>;
|
||||
|
||||
// copy global -> shared & compute absmax
|
||||
auto scalar_op_cache = [&] __device__(T & dst, const T& src) {
|
||||
float abs_v = fabsf(static_cast<float>(src));
|
||||
local_absmax = fmaxf(local_absmax, abs_v);
|
||||
dst = src;
|
||||
};
|
||||
|
||||
vllm::vectorize_with_alignment<vec_size>(
|
||||
group_input, // in
|
||||
smem_group, // out (shared)
|
||||
group_size, // elements per group
|
||||
lane_id, // thread id
|
||||
threads_per_group, // stride in group
|
||||
scalar_op_cache); // scalar handler
|
||||
|
||||
local_absmax = GroupReduceMax(local_absmax, lane_id);
|
||||
|
||||
float y_s = local_absmax / max_8bit;
|
||||
if constexpr (SCALE_UE8M0) {
|
||||
y_s = exp2f(ceilf(log2f(fmaxf(fabsf(y_s), 1e-10f))));
|
||||
}
|
||||
|
||||
scale_element_t y_s_quant = y_s;
|
||||
|
||||
if (lane_id == 0) {
|
||||
*scale_output = y_s_quant;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// quantize shared -> global 8-bit
|
||||
auto scalar_op_quant = [&] __device__(DST_DTYPE & dst, const T& src) {
|
||||
float q = fminf(fmaxf(static_cast<float>(src) / y_s, min_8bit), max_8bit);
|
||||
dst = DST_DTYPE(q);
|
||||
};
|
||||
|
||||
vllm::vectorize_with_alignment<vec_size>(
|
||||
smem_group, // in (shared)
|
||||
group_output, // out (global quant tensor)
|
||||
group_size, // elements
|
||||
lane_id, // tid
|
||||
threads_per_group, // stride
|
||||
scalar_op_quant); // scalar handler
|
||||
}
|
||||
|
||||
void per_token_group_quant_8bit(const torch::Tensor& input,
|
||||
torch::Tensor& output_q,
|
||||
torch::Tensor& output_s, int64_t group_size,
|
||||
double eps, double min_8bit, double max_8bit,
|
||||
bool scale_ue8m0) {
|
||||
TORCH_CHECK(input.is_contiguous());
|
||||
TORCH_CHECK(output_q.is_contiguous());
|
||||
|
||||
const int num_groups = input.numel() / group_size;
|
||||
|
||||
TORCH_CHECK(input.numel() % group_size == 0);
|
||||
TORCH_CHECK(output_s.dim() == 2);
|
||||
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
|
||||
constexpr int THREADS_PER_GROUP = 16;
|
||||
|
||||
int groups_per_block = 1;
|
||||
|
||||
if (num_groups % 16 == 0) {
|
||||
groups_per_block = 16;
|
||||
} else if (num_groups % 8 == 0) {
|
||||
groups_per_block = 8;
|
||||
} else if (num_groups % 4 == 0) {
|
||||
groups_per_block = 4;
|
||||
} else if (num_groups % 2 == 0) {
|
||||
groups_per_block = 2;
|
||||
}
|
||||
|
||||
auto dst_type = output_q.scalar_type();
|
||||
const int num_blocks = num_groups / groups_per_block;
|
||||
const int num_threads = groups_per_block * THREADS_PER_GROUP;
|
||||
|
||||
const bool is_column_major = output_s.stride(0) < output_s.stride(1);
|
||||
const int scale_num_rows = output_s.size(1);
|
||||
const int scale_stride = output_s.stride(1);
|
||||
|
||||
#define LAUNCH_KERNEL(T, DST_DTYPE) \
|
||||
do { \
|
||||
dim3 grid(num_blocks); \
|
||||
dim3 block(num_threads); \
|
||||
size_t smem_bytes = \
|
||||
static_cast<size_t>(groups_per_block) * group_size * sizeof(T); \
|
||||
if (is_column_major) { \
|
||||
if (scale_ue8m0) { \
|
||||
per_token_group_quant_8bit_kernel<T, DST_DTYPE, true, true> \
|
||||
<<<grid, block, smem_bytes, stream>>>( \
|
||||
static_cast<T*>(input.data_ptr()), output_q.data_ptr(), \
|
||||
static_cast<float*>(output_s.data_ptr()), group_size, \
|
||||
num_groups, groups_per_block, (float)eps, (float)min_8bit, \
|
||||
(float)max_8bit, scale_num_rows, scale_stride); \
|
||||
} else { \
|
||||
per_token_group_quant_8bit_kernel<T, DST_DTYPE, true, false> \
|
||||
<<<grid, block, smem_bytes, stream>>>( \
|
||||
static_cast<T*>(input.data_ptr()), output_q.data_ptr(), \
|
||||
static_cast<float*>(output_s.data_ptr()), group_size, \
|
||||
num_groups, groups_per_block, (float)eps, (float)min_8bit, \
|
||||
(float)max_8bit, scale_num_rows, scale_stride); \
|
||||
} \
|
||||
} else { \
|
||||
if (scale_ue8m0) { \
|
||||
per_token_group_quant_8bit_kernel<T, DST_DTYPE, false, true> \
|
||||
<<<grid, block, smem_bytes, stream>>>( \
|
||||
static_cast<T*>(input.data_ptr()), output_q.data_ptr(), \
|
||||
static_cast<float*>(output_s.data_ptr()), group_size, \
|
||||
num_groups, groups_per_block, (float)eps, (float)min_8bit, \
|
||||
(float)max_8bit); \
|
||||
} else { \
|
||||
per_token_group_quant_8bit_kernel<T, DST_DTYPE, false, false> \
|
||||
<<<grid, block, smem_bytes, stream>>>( \
|
||||
static_cast<T*>(input.data_ptr()), output_q.data_ptr(), \
|
||||
static_cast<float*>(output_s.data_ptr()), group_size, \
|
||||
num_groups, groups_per_block, (float)eps, (float)min_8bit, \
|
||||
(float)max_8bit); \
|
||||
} \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
VLLM_DISPATCH_FLOATING_TYPES(
|
||||
input.scalar_type(), "per_token_group_quant_8bit", ([&] {
|
||||
if (dst_type == at::ScalarType::Float8_e4m3fn) {
|
||||
LAUNCH_KERNEL(scalar_t, c10::Float8_e4m3fn);
|
||||
} else if (dst_type == at::ScalarType::Char) {
|
||||
LAUNCH_KERNEL(scalar_t, int8_t);
|
||||
}
|
||||
}));
|
||||
|
||||
#undef LAUNCH_KERNEL
|
||||
}
|
||||
|
||||
void per_token_group_quant_fp8(const torch::Tensor& input,
|
||||
torch::Tensor& output_q, torch::Tensor& output_s,
|
||||
int64_t group_size, double eps, double fp8_min,
|
||||
double fp8_max, bool scale_ue8m0) {
|
||||
per_token_group_quant_8bit(input, output_q, output_s, group_size, eps,
|
||||
fp8_min, fp8_max, scale_ue8m0);
|
||||
}
|
||||
@ -4,7 +4,7 @@
|
||||
#include <torch/all.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
#include "cuda_compat.h"
|
||||
#include "../../cuda_compat.h"
|
||||
#include "dispatch_utils.h"
|
||||
|
||||
#include "ggml-common.h"
|
||||
|
||||
@ -187,8 +187,12 @@ struct PrepackedLayoutBTemplate {
|
||||
CUTE_HOST_DEVICE static constexpr auto TVbNbKL_to_offset_copy(
|
||||
Shape_NKL shape_mkl) {
|
||||
auto layout = TVbNbKL_to_offset(shape_mkl);
|
||||
return make_layout(coalesce(get<0>(layout)), get<1>(layout),
|
||||
get<2>(layout));
|
||||
// for 4-bit elements, having >= 64 values per column
|
||||
// allows TMA to load full 32-byte sectors
|
||||
auto inner_layout =
|
||||
make_layout(make_shape(_256{}, size<0>(layout) / _256{}));
|
||||
|
||||
return make_layout(inner_layout, get<1>(layout), get<2>(layout));
|
||||
}
|
||||
|
||||
// ((BlockN, BlockK), (BlocksN, BlocksK), L) -> (storage_idx)
|
||||
|
||||
10
csrc/quantization/per_token_group_quant_8bit.h
Normal file
10
csrc/quantization/per_token_group_quant_8bit.h
Normal file
@ -0,0 +1,10 @@
|
||||
#pragma once
|
||||
#include <torch/all.h>
|
||||
|
||||
// TODO(wentao): refactor the folder to 8bit, then includes fp8 and int8 folders
|
||||
// 8-bit per-token-group quantization helper used by both FP8 and INT8
|
||||
void per_token_group_quant_8bit(const torch::Tensor& input,
|
||||
torch::Tensor& output_q,
|
||||
torch::Tensor& output_s, int64_t group_size,
|
||||
double eps, double min_8bit, double max_8bit,
|
||||
bool scale_ue8m0 = false);
|
||||
@ -19,7 +19,7 @@
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <hip/hip_fp8.h>
|
||||
#include <hip/hip_bf16.h>
|
||||
#include "cuda_compat.h"
|
||||
#include "../cuda_compat.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include "../attention/dtype_fp8.cuh"
|
||||
|
||||
@ -9,7 +9,7 @@
|
||||
#include <stdexcept>
|
||||
#include <algorithm>
|
||||
|
||||
#include "cuda_compat.h"
|
||||
#include "../cuda_compat.h"
|
||||
#include "dispatch_utils.h"
|
||||
#include "quantization/fp8/common.cuh"
|
||||
|
||||
|
||||
@ -20,13 +20,17 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
// vLLM custom ops
|
||||
//
|
||||
|
||||
// The default behavior in PyTorch 2.6 is "requires_contiguous", so we need
|
||||
// The default behavior in PyTorch 2.6 was changed to "requires_contiguous",
|
||||
// so we need
|
||||
// to override this for many GEMMs with the following tag. Otherwise,
|
||||
// torch.compile will force all input tensors to be contiguous(), which
|
||||
// will break many custom ops that require column-major weight matrices.
|
||||
// TODO: remove this for PyTorch 2.8, when the default is planned to switch
|
||||
// to match exact eager-mode strides.
|
||||
at::Tag stride_tag = at::Tag::needs_fixed_stride_order;
|
||||
// This was a bug and PyTorch 2.7 has since fixed this.
|
||||
#if TORCH_VERSION_MAJOR == 2 && TORCH_VERSION_MINOR == 6
|
||||
#define stride_tag at::Tag::needs_fixed_stride_order
|
||||
#else
|
||||
#define stride_tag
|
||||
#endif
|
||||
|
||||
ops.def("weak_ref_tensor(Tensor input) -> Tensor");
|
||||
ops.impl("weak_ref_tensor", torch::kCUDA, &weak_ref_tensor);
|
||||
@ -514,6 +518,22 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
" Tensor page_table, float scale) -> ()");
|
||||
ops.impl("cutlass_mla_decode", torch::kCUDA, &cutlass_mla_decode);
|
||||
|
||||
// SM100 CUTLASS MLA decode
|
||||
ops.def(
|
||||
"sm100_cutlass_mla_decode(Tensor! out, Tensor q_nope, Tensor q_pe,"
|
||||
" Tensor kv_c_and_k_pe_cache, Tensor seq_lens,"
|
||||
" Tensor page_table, Tensor workspace, float "
|
||||
"scale,"
|
||||
" int num_kv_splits) -> ()");
|
||||
// conditionally compiled so impl in source file
|
||||
|
||||
// SM100 CUTLASS MLA workspace
|
||||
ops.def(
|
||||
"sm100_cutlass_mla_get_workspace_size(int max_seq_len, int num_batches,"
|
||||
" int sm_count, int num_kv_splits) "
|
||||
"-> int");
|
||||
// conditionally compiled so impl in source file
|
||||
|
||||
// Compute NVFP4 block quantized tensor.
|
||||
ops.def(
|
||||
"scaled_fp4_quant(Tensor! output, Tensor input,"
|
||||
@ -595,6 +615,23 @@ TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
||||
ops.impl("selective_scan_fwd", torch::kCUDA, &selective_scan_fwd);
|
||||
|
||||
#ifndef USE_ROCM
|
||||
// Compute per-token-group FP8 quantized tensor and scaling factor.
|
||||
ops.def(
|
||||
"per_token_group_fp8_quant(Tensor input, Tensor! output_q, Tensor! "
|
||||
"output_s, "
|
||||
"int group_size, float eps, float fp8_min, float fp8_max, bool "
|
||||
"scale_ue8m0) -> ()");
|
||||
ops.impl("per_token_group_fp8_quant", torch::kCUDA,
|
||||
&per_token_group_quant_fp8);
|
||||
|
||||
// Compute per-token-group INT8 quantized tensor and scaling factor.
|
||||
ops.def(
|
||||
"per_token_group_quant_int8(Tensor input, Tensor! output_q, Tensor! "
|
||||
"output_s, int group_size, float eps, float int8_min, float int8_max) -> "
|
||||
"()");
|
||||
ops.impl("per_token_group_quant_int8", torch::kCUDA,
|
||||
&per_token_group_quant_int8);
|
||||
|
||||
// reorder weight for AllSpark Ampere W8A16 Fused Gemm kernel
|
||||
ops.def(
|
||||
"rearrange_kn_weight_as_n32k16_order(Tensor b_qweight, Tensor b_scales, "
|
||||
|
||||
@ -63,7 +63,7 @@ ARG PYTORCH_CUDA_NIGHTLY_INDEX_BASE_URL=https://download.pytorch.org/whl/nightly
|
||||
ARG PIP_KEYRING_PROVIDER=disabled
|
||||
ARG UV_KEYRING_PROVIDER=${PIP_KEYRING_PROVIDER}
|
||||
|
||||
# Flag enables build-in KV-connector dependency libs into docker images
|
||||
# Flag enables built-in KV-connector dependency libs into docker images
|
||||
ARG INSTALL_KV_CONNECTORS=false
|
||||
|
||||
#################### BASE BUILD IMAGE ####################
|
||||
@ -207,6 +207,19 @@ ARG SCCACHE_ENDPOINT
|
||||
ARG SCCACHE_BUCKET_NAME=vllm-build-sccache
|
||||
ARG SCCACHE_REGION_NAME=us-west-2
|
||||
ARG SCCACHE_S3_NO_CREDENTIALS=0
|
||||
|
||||
# Flag to control whether to use pre-built vLLM wheels
|
||||
ARG VLLM_USE_PRECOMPILED
|
||||
# TODO: in setup.py VLLM_USE_PRECOMPILED is sensitive to truthiness, it will take =0 as "true", this should be fixed
|
||||
ENV VLLM_USE_PRECOMPILED=""
|
||||
RUN if [ "${VLLM_USE_PRECOMPILED}" = "1" ]; then \
|
||||
export VLLM_USE_PRECOMPILED=1 && \
|
||||
echo "Using precompiled wheels"; \
|
||||
else \
|
||||
unset VLLM_USE_PRECOMPILED && \
|
||||
echo "Leaving VLLM_USE_PRECOMPILED unset to build wheels from source"; \
|
||||
fi
|
||||
|
||||
# if USE_SCCACHE is set, use sccache to speed up compilation
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
@ -252,7 +265,7 @@ RUN if [ "$RUN_WHEEL_CHECK" = "true" ]; then \
|
||||
#################### EXTENSION Build IMAGE ####################
|
||||
|
||||
#################### DEV IMAGE ####################
|
||||
FROM base as dev
|
||||
FROM base AS dev
|
||||
|
||||
ARG PIP_INDEX_URL UV_INDEX_URL
|
||||
ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
||||
@ -263,10 +276,6 @@ ARG PYTORCH_CUDA_INDEX_BASE_URL
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
|
||||
# Workaround for #17068
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
|
||||
|
||||
COPY requirements/lint.txt requirements/lint.txt
|
||||
COPY requirements/test.txt requirements/test.txt
|
||||
COPY requirements/dev.txt requirements/dev.txt
|
||||
@ -375,47 +384,33 @@ RUN --mount=type=bind,from=build,src=/workspace/dist,target=/vllm-workspace/dist
|
||||
# -rw-rw-r-- 1 mgoin mgoin 205M Jun 9 18:03 flashinfer_python-0.2.6.post1-cp39-abi3-linux_x86_64.whl
|
||||
# $ # upload the wheel to a public location, e.g. https://wheels.vllm.ai/flashinfer/v0.2.6.post1/flashinfer_python-0.2.6.post1-cp39-abi3-linux_x86_64.whl
|
||||
|
||||
# Allow specifying a version, Git revision or local .whl file
|
||||
ARG FLASHINFER_CUDA128_INDEX_URL="https://download.pytorch.org/whl/cu128/flashinfer"
|
||||
ARG FLASHINFER_CUDA128_WHEEL="flashinfer_python-0.2.6.post1%2Bcu128torch2.7-cp39-abi3-linux_x86_64.whl"
|
||||
# Install FlashInfer from source
|
||||
ARG FLASHINFER_GIT_REPO="https://github.com/flashinfer-ai/flashinfer.git"
|
||||
ARG FLASHINFER_GIT_REF="v0.2.8rc1"
|
||||
# Flag to control whether to use pre-built FlashInfer wheels (set to false to force build from source)
|
||||
# TODO: Currently disabled because the pre-built wheels are not available for FLASHINFER_GIT_REF
|
||||
ARG USE_FLASHINFER_PREBUILT_WHEEL=false
|
||||
ARG FLASHINFER_GIT_REF="v0.2.9rc1"
|
||||
RUN --mount=type=cache,target=/root/.cache/uv bash - <<'BASH'
|
||||
. /etc/environment
|
||||
if [ "$TARGETPLATFORM" != "linux/arm64" ]; then
|
||||
# FlashInfer already has a wheel for PyTorch 2.7.0 and CUDA 12.8. This is enough for CI use
|
||||
if [[ "$CUDA_VERSION" == 12.8* ]] && [[ "$USE_FLASHINFER_PREBUILT_WHEEL" == "true" ]]; then
|
||||
uv pip install --system ${FLASHINFER_CUDA128_INDEX_URL}/${FLASHINFER_CUDA128_WHEEL}
|
||||
else
|
||||
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
|
||||
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
|
||||
if [[ "${CUDA_VERSION}" == 11.* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
|
||||
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
|
||||
else
|
||||
# CUDA 12.8+ supports 10.0a and 12.0
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
|
||||
fi
|
||||
echo "🏗️ Building FlashInfer for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
|
||||
|
||||
git clone --depth 1 --recursive --shallow-submodules \
|
||||
--branch ${FLASHINFER_GIT_REF} \
|
||||
${FLASHINFER_GIT_REPO} flashinfer
|
||||
|
||||
# Needed to build AOT kernels
|
||||
pushd flashinfer
|
||||
git clone --depth 1 --recursive --shallow-submodules \
|
||||
--branch ${FLASHINFER_GIT_REF} \
|
||||
${FLASHINFER_GIT_REPO} flashinfer
|
||||
# Exclude CUDA arches for older versions (11.x and 12.0-12.7)
|
||||
# TODO: Update this to allow setting TORCH_CUDA_ARCH_LIST as a build arg.
|
||||
if [[ "${CUDA_VERSION}" == 11.* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9"
|
||||
elif [[ "${CUDA_VERSION}" == 12.[0-7]* ]]; then
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a"
|
||||
else
|
||||
# CUDA 12.8+ supports 10.0a and 12.0
|
||||
FI_TORCH_CUDA_ARCH_LIST="7.5 8.0 8.9 9.0a 10.0a 12.0"
|
||||
fi
|
||||
echo "🏗️ Building FlashInfer for arches: ${FI_TORCH_CUDA_ARCH_LIST}"
|
||||
# Needed to build AOT kernels
|
||||
pushd flashinfer
|
||||
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
|
||||
python3 -m flashinfer.aot
|
||||
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
|
||||
uv pip install --system --no-build-isolation .
|
||||
popd
|
||||
|
||||
rm -rf flashinfer
|
||||
fi \
|
||||
fi
|
||||
TORCH_CUDA_ARCH_LIST="${FI_TORCH_CUDA_ARCH_LIST}" \
|
||||
uv pip install --system --no-build-isolation .
|
||||
popd
|
||||
rm -rf flashinfer
|
||||
BASH
|
||||
COPY examples examples
|
||||
COPY benchmarks benchmarks
|
||||
@ -453,10 +448,6 @@ ARG PIP_EXTRA_INDEX_URL UV_EXTRA_INDEX_URL
|
||||
ENV UV_HTTP_TIMEOUT=500
|
||||
ENV UV_INDEX_STRATEGY="unsafe-best-match"
|
||||
|
||||
# Workaround for #17068
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system --no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
CUDA_MAJOR="${CUDA_VERSION%%.*}"; \
|
||||
@ -507,10 +498,11 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --system -r requirements/kv_connectors.txt; \
|
||||
fi; \
|
||||
if [ "$TARGETPLATFORM" = "linux/arm64" ]; then \
|
||||
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.42.0' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
|
||||
BITSANDBYTES_VERSION="0.42.0"; \
|
||||
else \
|
||||
uv pip install --system accelerate hf_transfer 'modelscope!=1.15.0' 'bitsandbytes>=0.46.1' 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]; \
|
||||
fi
|
||||
BITSANDBYTES_VERSION="0.46.1"; \
|
||||
fi; \
|
||||
uv pip install --system accelerate hf_transfer modelscope "bitsandbytes>=${BITSANDBYTES_VERSION}" 'timm==0.9.10' boto3 runai-model-streamer runai-model-streamer[s3]
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image
|
||||
|
||||
|
||||
@ -1,62 +0,0 @@
|
||||
# This vLLM Dockerfile is used to construct an image that can build and run vLLM on ARM CPU platform.
|
||||
|
||||
FROM ubuntu:22.04 AS cpu-test-arm
|
||||
|
||||
ENV CCACHE_DIR=/root/.cache/ccache
|
||||
|
||||
ENV CMAKE_CXX_COMPILER_LAUNCHER=ccache
|
||||
|
||||
RUN --mount=type=cache,target=/var/cache/apt \
|
||||
apt-get update -y \
|
||||
&& apt-get install -y curl ccache git wget vim numactl gcc-12 g++-12 python3 python3-pip libtcmalloc-minimal4 libnuma-dev \
|
||||
&& apt-get install -y ffmpeg libsm6 libxext6 libgl1 \
|
||||
&& update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-12 10 --slave /usr/bin/g++ g++ /usr/bin/g++-12
|
||||
|
||||
# tcmalloc provides better memory allocation efficiency, e.g., holding memory in caches to speed up access of commonly-used objects.
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install py-cpuinfo # Use this to gather CPU info and optimize based on ARM Neoverse cores
|
||||
|
||||
# Set LD_PRELOAD for tcmalloc on ARM
|
||||
ENV LD_PRELOAD="/usr/lib/aarch64-linux-gnu/libtcmalloc_minimal.so.4"
|
||||
|
||||
RUN echo 'ulimit -c 0' >> ~/.bashrc
|
||||
|
||||
WORKDIR /workspace
|
||||
|
||||
ARG PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
|
||||
ENV PIP_EXTRA_INDEX_URL=${PIP_EXTRA_INDEX_URL}
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements/build.txt,target=requirements/build.txt \
|
||||
pip install --upgrade pip && \
|
||||
pip install -r requirements/build.txt
|
||||
|
||||
FROM cpu-test-arm AS build
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=bind,src=requirements/common.txt,target=requirements/common.txt \
|
||||
--mount=type=bind,src=requirements/cpu.txt,target=requirements/cpu.txt \
|
||||
pip install -v -r requirements/cpu.txt
|
||||
|
||||
COPY . .
|
||||
ARG GIT_REPO_CHECK=0
|
||||
RUN --mount=type=bind,source=.git,target=.git \
|
||||
if [ "$GIT_REPO_CHECK" != 0 ]; then bash tools/check_repo.sh ; fi
|
||||
|
||||
# Disabling AVX512 specific optimizations for ARM
|
||||
ARG VLLM_CPU_DISABLE_AVX512="true"
|
||||
ENV VLLM_CPU_DISABLE_AVX512=${VLLM_CPU_DISABLE_AVX512}
|
||||
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
--mount=type=cache,target=/root/.cache/ccache \
|
||||
--mount=type=bind,source=.git,target=.git \
|
||||
VLLM_TARGET_DEVICE=cpu python3 setup.py bdist_wheel && \
|
||||
pip install dist/*.whl && \
|
||||
rm -rf dist
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
@ -1,4 +1,11 @@
|
||||
# This vLLM Dockerfile is used to construct image that can build and run vLLM on x86 CPU platform.
|
||||
# This vLLM Dockerfile is used to build images that can run vLLM on both x86_64 and arm64 CPU platforms.
|
||||
#
|
||||
# Supported platforms:
|
||||
# - linux/amd64 (x86_64)
|
||||
# - linux/arm64 (aarch64)
|
||||
#
|
||||
# Use the `--platform` option with `docker buildx build` to specify the target architecture, e.g.:
|
||||
# docker buildx build --platform=linux/arm64 -f docker/Dockerfile.cpu .
|
||||
#
|
||||
# Build targets:
|
||||
# vllm-openai (default): used for serving deployment
|
||||
@ -53,7 +60,20 @@ RUN --mount=type=cache,target=/root/.cache/uv \
|
||||
uv pip install --upgrade pip && \
|
||||
uv pip install -r requirements/cpu.txt
|
||||
|
||||
ENV LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/opt/venv/lib/libiomp5.so:$LD_PRELOAD"
|
||||
ARG TARGETARCH
|
||||
ENV TARGETARCH=${TARGETARCH}
|
||||
|
||||
RUN if [ "$TARGETARCH" = "arm64" ]; then \
|
||||
PRELOAD_PATH="/usr/lib/aarch64-linux-gnu/libtcmalloc_minimal.so.4"; \
|
||||
else \
|
||||
PRELOAD_PATH="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4:/opt/venv/lib/libiomp5.so"; \
|
||||
fi && \
|
||||
echo "export LD_PRELOAD=$PRELOAD_PATH" >> ~/.bashrc
|
||||
|
||||
# Ensure that the LD_PRELOAD environment variable for export is in effect.
|
||||
SHELL ["/bin/bash", "-c"]
|
||||
|
||||
ENV LD_PRELOAD=${LD_PRELOAD}
|
||||
|
||||
RUN echo 'ulimit -c 0' >> ~/.bashrc
|
||||
|
||||
@ -95,7 +115,7 @@ WORKDIR /workspace/vllm
|
||||
RUN --mount=type=bind,src=requirements/test.in,target=requirements/test.in \
|
||||
cp requirements/test.in requirements/cpu-test.in && \
|
||||
sed -i '/mamba_ssm/d' requirements/cpu-test.in && \
|
||||
sed -i 's/torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
|
||||
sed -i 's/^torch==.*/torch==2.6.0/g' requirements/cpu-test.in && \
|
||||
sed -i 's/torchaudio.*/torchaudio/g' requirements/cpu-test.in && \
|
||||
sed -i 's/torchvision.*/torchvision/g' requirements/cpu-test.in && \
|
||||
uv pip compile requirements/cpu-test.in -o requirements/cpu-test.txt --index-strategy unsafe-best-match --torch-backend cpu
|
||||
|
||||
@ -1,21 +0,0 @@
|
||||
FROM vault.habana.ai/gaudi-docker/1.20.1/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
|
||||
|
||||
COPY ./ /workspace/vllm
|
||||
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
RUN pip install -v -r requirements/hpu.txt
|
||||
|
||||
ENV no_proxy=localhost,127.0.0.1
|
||||
ENV PT_HPU_ENABLE_LAZY_COLLECTIVES=true
|
||||
|
||||
RUN VLLM_TARGET_DEVICE=hpu python3 setup.py install
|
||||
|
||||
# install development dependencies (for testing)
|
||||
RUN python3 -m pip install -e tests/vllm_test_utils
|
||||
|
||||
WORKDIR /workspace/
|
||||
|
||||
RUN ln -s /workspace/vllm/tests && ln -s /workspace/vllm/examples && ln -s /workspace/vllm/benchmarks
|
||||
|
||||
ENTRYPOINT ["python3", "-m", "vllm.entrypoints.openai.api_server"]
|
||||
@ -12,7 +12,7 @@ ARG PYTORCH_REPO="https://github.com/pytorch/pytorch.git"
|
||||
ARG PYTORCH_VISION_REPO="https://github.com/pytorch/vision.git"
|
||||
ARG FA_BRANCH="1a7f4dfa"
|
||||
ARG FA_REPO="https://github.com/Dao-AILab/flash-attention.git"
|
||||
ARG AITER_BRANCH="6487649"
|
||||
ARG AITER_BRANCH="916bf3c"
|
||||
ARG AITER_REPO="https://github.com/ROCm/aiter.git"
|
||||
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
ARG NIGHTLY_DATE="20250124"
|
||||
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.10_tpuvm_$NIGHTLY_DATE"
|
||||
ARG NIGHTLY_DATE="20250724"
|
||||
ARG BASE_IMAGE="us-central1-docker.pkg.dev/tpu-pytorch-releases/docker/xla:nightly_3.12_tpuvm_$NIGHTLY_DATE"
|
||||
|
||||
FROM $BASE_IMAGE
|
||||
WORKDIR /workspace/vllm
|
||||
|
||||
@ -47,7 +47,7 @@ FROM vllm-base AS vllm-openai
|
||||
|
||||
# install additional dependencies for openai api server
|
||||
RUN --mount=type=cache,target=/root/.cache/pip \
|
||||
pip install accelerate hf_transfer pytest 'modelscope!=1.15.0'
|
||||
pip install accelerate hf_transfer pytest pytest_asyncio lm_eval[api] modelscope
|
||||
|
||||
ENV VLLM_USAGE_SOURCE production-docker-image \
|
||||
TRITON_XPU_PROFILE 1
|
||||
|
||||
@ -36,7 +36,7 @@ vLLM is flexible and easy to use with:
|
||||
|
||||
- Seamless integration with popular HuggingFace models
|
||||
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
|
||||
- Tensor parallelism and pipeline parallelism support for distributed inference
|
||||
- Tensor, pipeline, data and expert parallelism support for distributed inference
|
||||
- Streaming outputs
|
||||
- OpenAI-compatible API server
|
||||
- Support NVIDIA GPUs, AMD CPUs and GPUs, Intel CPUs, Gaudi® accelerators and GPUs, IBM Power CPUs, TPU, and AWS Trainium and Inferentia Accelerators.
|
||||
|
||||
@ -8,14 +8,12 @@ API documentation for vLLM's configuration classes.
|
||||
|
||||
- [vllm.config.ModelConfig][]
|
||||
- [vllm.config.CacheConfig][]
|
||||
- [vllm.config.TokenizerPoolConfig][]
|
||||
- [vllm.config.LoadConfig][]
|
||||
- [vllm.config.ParallelConfig][]
|
||||
- [vllm.config.SchedulerConfig][]
|
||||
- [vllm.config.DeviceConfig][]
|
||||
- [vllm.config.SpeculativeConfig][]
|
||||
- [vllm.config.LoRAConfig][]
|
||||
- [vllm.config.PromptAdapterConfig][]
|
||||
- [vllm.config.MultiModalConfig][]
|
||||
- [vllm.config.PoolerConfig][]
|
||||
- [vllm.config.DecodingConfig][]
|
||||
|
||||
BIN
docs/assets/deployment/dp_external_lb.png
Normal file
BIN
docs/assets/deployment/dp_external_lb.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 84 KiB |
BIN
docs/assets/deployment/dp_internal_lb.png
Normal file
BIN
docs/assets/deployment/dp_internal_lb.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 68 KiB |
Binary file not shown.
|
Before Width: | Height: | Size: 68 KiB After Width: | Height: | Size: 57 KiB |
@ -1,3 +1,7 @@
|
||||
---
|
||||
toc_depth: 4
|
||||
---
|
||||
|
||||
# vLLM CLI Guide
|
||||
|
||||
The vllm command-line tool is used to run and manage vLLM models. You can start by viewing the help message with:
|
||||
@ -37,8 +41,15 @@ Start the vLLM OpenAI Compatible API server.
|
||||
|
||||
# To search by keyword
|
||||
vllm serve --help=max
|
||||
|
||||
# To view full help with pager (less/more)
|
||||
vllm serve --help=page
|
||||
```
|
||||
|
||||
### Options
|
||||
|
||||
--8<-- "docs/argparse/serve.md"
|
||||
|
||||
## chat
|
||||
|
||||
Generate chat completions via the running API server.
|
||||
|
||||
@ -14,7 +14,7 @@ For example:
|
||||
```python
|
||||
from vllm import LLM
|
||||
|
||||
model = LLM(
|
||||
llm = LLM(
|
||||
model="cerebras/Cerebras-GPT-1.3B",
|
||||
hf_overrides={"architectures": ["GPT2LMHeadModel"]}, # GPT-2
|
||||
)
|
||||
|
||||
@ -5,7 +5,7 @@ The `vllm serve` command is used to launch the OpenAI-compatible server.
|
||||
## CLI Arguments
|
||||
|
||||
The `vllm serve` command is used to launch the OpenAI-compatible server.
|
||||
To see the available CLI arguments, run `vllm serve --help`!
|
||||
To see the available options, take a look at the [CLI Reference](../cli/README.md#options)!
|
||||
|
||||
## Configuration file
|
||||
|
||||
|
||||
@ -98,7 +98,7 @@ For additional features and advanced configurations, refer to the official [MkDo
|
||||
??? console "Commands"
|
||||
|
||||
```bash
|
||||
pip install -r requirements/dev.txt
|
||||
pip install -r requirements/common.txt -r requirements/dev.txt
|
||||
|
||||
# Linting, formatting and static type checking
|
||||
pre-commit install --hook-type pre-commit --hook-type commit-msg
|
||||
|
||||
@ -134,7 +134,7 @@ MAX_JOBS=16 uv pip install --system \
|
||||
|
||||
```bash
|
||||
uv pip install --system \
|
||||
--no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.4"
|
||||
--no-build-isolation "git+https://github.com/state-spaces/mamba@v2.2.5"
|
||||
```
|
||||
|
||||
### causal-conv1d
|
||||
|
||||
@ -73,6 +73,8 @@ def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
...
|
||||
```
|
||||
|
||||
@ -9,10 +9,13 @@ We support tracing vLLM workers using the `torch.profiler` module. You can enabl
|
||||
|
||||
The OpenAI server also needs to be started with the `VLLM_TORCH_PROFILER_DIR` environment variable set.
|
||||
|
||||
When using `benchmarks/benchmark_serving.py`, you can enable profiling by passing the `--profile` flag.
|
||||
When using `vllm bench serve`, you can enable profiling by passing the `--profile` flag.
|
||||
|
||||
Traces can be visualized using <https://ui.perfetto.dev/>.
|
||||
|
||||
!!! tip
|
||||
You can directly call bench module without installing vllm using `python -m vllm.entrypoints.cli.main bench`.
|
||||
|
||||
!!! tip
|
||||
Only send a few requests through vLLM when profiling, as the traces can get quite large. Also, no need to untar the traces, they can be viewed directly.
|
||||
|
||||
@ -35,10 +38,10 @@ VLLM_TORCH_PROFILER_DIR=./vllm_profile \
|
||||
--model meta-llama/Meta-Llama-3-70B
|
||||
```
|
||||
|
||||
benchmark_serving.py:
|
||||
vllm bench command:
|
||||
|
||||
```bash
|
||||
python benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model meta-llama/Meta-Llama-3-70B \
|
||||
--dataset-name sharegpt \
|
||||
@ -69,13 +72,13 @@ apt install nsight-systems-cli
|
||||
|
||||
For basic usage, you can just append `nsys profile -o report.nsys-rep --trace-fork-before-exec=true --cuda-graph-trace=node` before any existing script you would run for offline inference.
|
||||
|
||||
The following is an example using the `benchmarks/benchmark_latency.py` script:
|
||||
The following is an example using the `vllm bench latency` script:
|
||||
|
||||
```bash
|
||||
nsys profile -o report.nsys-rep \
|
||||
--trace-fork-before-exec=true \
|
||||
--cuda-graph-trace=node \
|
||||
python benchmarks/benchmark_latency.py \
|
||||
vllm bench latency \
|
||||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||||
--num-iters-warmup 5 \
|
||||
--num-iters 1 \
|
||||
@ -98,7 +101,7 @@ nsys profile -o report.nsys-rep \
|
||||
vllm serve meta-llama/Llama-3.1-8B-Instruct
|
||||
|
||||
# client
|
||||
python benchmarks/benchmark_serving.py \
|
||||
vllm bench serve \
|
||||
--backend vllm \
|
||||
--model meta-llama/Llama-3.1-8B-Instruct \
|
||||
--num-prompts 1 \
|
||||
@ -132,7 +135,7 @@ You can view these profiles either as summaries in the CLI, using `nsys stats [p
|
||||
...
|
||||
** CUDA GPU Kernel Summary (cuda_gpu_kern_sum):
|
||||
|
||||
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name
|
||||
Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name
|
||||
-------- --------------- --------- ----------- ----------- -------- --------- ----------- ----------------------------------------------------------------------------------------------------
|
||||
46.3 10,327,352,338 17,505 589,965.9 144,383.0 27,040 3,126,460 944,263.8 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize128x128x64_warpgroupsize1x1x1_execute_segment_k_of…
|
||||
14.8 3,305,114,764 5,152 641,520.7 293,408.0 287,296 2,822,716 867,124.9 sm90_xmma_gemm_bf16bf16_bf16f32_f32_tn_n_tilesize256x128x64_warpgroupsize2x1x1_execute_segment_k_of…
|
||||
@ -143,7 +146,7 @@ You can view these profiles either as summaries in the CLI, using `nsys stats [p
|
||||
2.6 587,283,113 37,824 15,526.7 3,008.0 2,719 2,517,756 139,091.1 std::enable_if<T2>(int)0&&vllm::_typeConvert<T1>::exists, void>::type vllm::fused_add_rms_norm_kern…
|
||||
1.9 418,362,605 18,912 22,121.5 3,871.0 3,328 2,523,870 175,248.2 void vllm::rotary_embedding_kernel<c10::BFloat16, (bool)1>(const long *, T1 *, T1 *, const T1 *, in…
|
||||
0.7 167,083,069 18,880 8,849.7 2,240.0 1,471 2,499,996 101,436.1 void vllm::reshape_and_cache_flash_kernel<__nv_bfloat16, __nv_bfloat16, (vllm::Fp8KVCacheDataType)0…
|
||||
...
|
||||
...
|
||||
```
|
||||
|
||||
GUI example:
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user